Simultaneous reduction in situ and thiol- functionalization of Graphene Oxide during the Photopolymerization of Epoxy/Thiol-ene photocurable systems to prepare polyether-polythioether/reduced graphene oxide nanocomposites

2019 ◽  
Vol 59 (3) ◽  
pp. 282-293 ◽  
Author(s):  
Ricardo Acosta Ortiz ◽  
Aida Esmeralda García Valdez ◽  
Jose de Jesus Ku Herrera
ACS Omega ◽  
2020 ◽  
Vol 5 (49) ◽  
pp. 31535-31542
Author(s):  
Weijun Miao ◽  
Feng Wu ◽  
Shiman Zhou ◽  
Guibin Yao ◽  
Yiguo Li ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 256
Author(s):  
Irina V. Pushkareva ◽  
Artem S. Pushkarev ◽  
Valery N. Kalinichenko ◽  
Ratibor G. Chumakov ◽  
Maksim A. Soloviev ◽  
...  

Platinum (Pt)-based electrocatalysts supported by reduced graphene oxide (RGO) were synthesized using two different methods, namely: (i) a conventional two-step polyol process using RGO as the substrate, and (ii) a modified polyol process implicating the simultaneous reduction of a Pt nanoparticle precursor and graphene oxide (GO). The structure, morphology, and electrochemical performances of the obtained Pt/RGO catalysts were studied and compared with a reference Pt/carbon black Vulcan XC-72 (C) sample. It was shown that the Pt/RGO obtained by the optimized simultaneous reduction process had higher Pt utilization and electrochemically active surface area (EASA) values, and a better performance stability. The use of this catalyst at the cathode of a proton exchange membrane fuel cell (PEMFC) led to an increase in its maximum power density of up to 17%, and significantly enhanced its performance especially at high current densities. It is possible to conclude that the optimized synthesis procedure allows for a more uniform distribution of the Pt nanoparticles and ensures better binding of the particles to the surface of the support. The advantages of Pt/RGO synthesized in this way over conventional Pt/C are the high electrical conductivity and specific surface area provided by RGO, as well as a reduction in the percolation limit of the components of the electrocatalytic layer due to the high aspect ratio of RGO.


2020 ◽  
Vol 59 (1) ◽  
pp. 477-487 ◽  
Author(s):  
Zhuang Liu ◽  
Haiyang Fu ◽  
Bo Gao ◽  
Yixuan Wang ◽  
Kui Li ◽  
...  

AbstractThis paper studies in-situ synthesis of Fe2O3/reduced graphene oxide (rGO) anode materials by different hydrothermal process.Scanning Electron Microscopy (SEM) analysis has found that different processes can control the morphology of graphene and Fe2O3. The morphologies of Fe2O3 prepared by the hydrothermal in-situ and oleic acid-assisted hydrothermal in-situ methods are mainly composed of fine spheres, while PVP assists The thermal in-situ law presents porous ellipsoids. Graphene exhibits typical folds and small lumps. X-ray diffraction analysis (XRD) analysis results show that Fe2O3/reduced graphene oxide (rGO) is generated in different ways. Also, the material has good crystallinity, and the crystal form of the iron oxide has not been changed after adding GO. It has been reduced, and a characteristic peak appears around 25°, indicating that a large amount of reduced graphene exists. The results of the electrochemical performance tests have found that the active materials prepared in different processes have different effects on the cycle performance of lithium ion batteries. By comprehensive comparison for these three processes, the electro-chemical performance of the Fe2O3/rGO prepared by the oleic acid-assisted hydrothermal method is best.


2021 ◽  
pp. 004051752199547
Author(s):  
Min Hou ◽  
Xinghua Hong ◽  
Yanjun Tang ◽  
Zimin Jin ◽  
Chengyan Zhu ◽  
...  

Functionalized knitted fabric, as a kind of flexible, wearable, and waterproof material capable of conductivity, sensitivity and outstanding hydrophobicity, is valuable for multi-field applications. Herein, the reduced graphene oxide (RGO)-coated knitted fabric (polyester/spandex blended) is prepared, which involves the use of graphite oxide (GO) by modified Hummers method and in-situ chemical reduction with hydrazine hydrate. The treated fabric exhibits a high electrical conductivity (202.09 S/cm) and an outstanding hydrophobicity (140°). The outstanding hydrophobicity is associated with the morphology of the fabric and fiber with reference to pseudo-infiltration. These properties can withstand repeated bending and washing without serious deterioration, maintaining good electrical conductivity (35.70 S/cm) and contact angle (119.39°) after eight standard washing cycles. The material, which has RGO architecture and continuous loop mesh structure, can find wide use in smart garment applications.


2016 ◽  
Vol 8 (11) ◽  
pp. 7403-7410 ◽  
Author(s):  
Guiming Peng ◽  
James E. Ellis ◽  
Gang Xu ◽  
Xueqing Xu ◽  
Alexander Star

Small ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 513-516 ◽  
Author(s):  
Xiao Huang ◽  
Xiaozhu Zhou ◽  
Shixin Wu ◽  
Yanyan Wei ◽  
Xiaoying Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document