scholarly journals Outer plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants of Saccharomyces cerevisiae.

1985 ◽  
Vol 100 (6) ◽  
pp. 1854-1862 ◽  
Author(s):  
I Uno ◽  
K Matsumoto ◽  
A Hirata ◽  
T Ishikawa

Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two-spored asci at the restrictive temperature. Temperature-sensitive period for production of two-spored asci was approximately 12 h after the transfer of cells to the sporulation medium. The levels of cAMP increased during this period in the wild type and cyr1-2/cyr1-2 diploid cells incubated at the permissive temperature, but remained at an extremely low level in the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature. Dyad analysis of the cyr1-2 strain indicated that meiotic products were randomly included into ascospores. Fluorescent microscopy of the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature revealed that individual haploid nuclei were enclosed in each of the two spores after meiosis. About half of the cyr1-2/cyr1-2 diploid cells entered normal meiosis 1 producing two normal spindle pole bodies with inner and outer plaques, and the other half entered abnormal meiosis 1 producing one normal spindle pole body and one defective spindle pole body without out plaque. At meiosis II, some cells contained a pair of normal spindle pole bodies and other cells contained pairs of normal and abnormal spindle pole bodies.

Genetics ◽  
1980 ◽  
Vol 96 (4) ◽  
pp. 859-876 ◽  
Author(s):  
David Schild ◽  
Breck Byers

ABSTRACT The meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae (cdc5 and cdc14) have been examined. These mutations were isolated by L. H. Hartwell and his colleagues and characterized as defective in mitosis, causing a temperature-sensitive arrest in late nuclear division. When subjected to the restrictive temperature in meiosis, diploid cells homozygous for either of these mutations generally proceeded through premeiotic DNA synthesis and commitment to meiotic levels of recombination, but then arrested at a stage following spindle pole body (SPB) duplication and separation. The two SPBs lacked the interconnection by spindle microtubules typical of the complete meiosis I spindle. Challenge of these homozygotes by a semi-restrictive temperature often caused the production of asci containing two diploid spores. Genetic analysis of the viable pairs of spores revealed that each spore had become homozygous for centromere-linked markers significantly more frequently than for distal markers, indicating that the two spores each contained pairs of sister centromeres that had co-segregated in the reductional division of meiosis I. Ultrastructural analysis of the cdc5 homozygote demonstrated that these cells had completed meiosis I and formed two meiosis II spindles, but that the latter remained unusually short. This resulted in the encapsulation of both poles of each spindle within a single spore wall. These mutations therefore are defective in both meiotic divisions, as well as in the mitotic division described originally.


1996 ◽  
Vol 133 (1) ◽  
pp. 111-124 ◽  
Author(s):  
H A Sundberg ◽  
L Goetsch ◽  
B Byers ◽  
T N Davis

Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central plaque. We created temperature-sensitive SPC110 mutations by combining PCR mutagenesis with a plasmid shuffle strategy. The temperature-sensitive allele spc110-220 differs from wild type at two sites. The cysteine 911 to arginine mutation resides in the calmodulin-binding site and alone confers a temperature-sensitive phenotype. Calmodulin overproduction suppresses the temperature sensitivity of spc110-220. Furthermore, calmodulin levels at the SPB decrease in the mutant cells at the restrictive temperature. Thus, calmodulin binding to Spc110-220p is defective at the nonpermissive temperature. Synchronized mutant cells incubated at the nonpermissive temperature arrest as large budded cells with a G2 content of DNA and suffer considerable lethality. Immunofluorescent staining demonstrates failure of nuclear DNA segregation and breakage of many spindles. Electron microscopy reveals an aberrant nuclear structure, the intranuclear microtubule organizer (IMO), that differs from a SPB but serves as a center of microtubule organization. The IMO appears during nascent SPB formation and disappears after SPB separation. The IMO contains both the 90-kD and the mutant 110-kD SPB components. Our results suggest that disruption of the calmodulin Spc110p interaction leads to the aberrant assembly of SPB components into the IMO, which in turn perturbs spindle formation.


2001 ◽  
Vol 183 (7) ◽  
pp. 2372-2375 ◽  
Author(s):  
Andreas Wesp ◽  
Susanne Prinz ◽  
Gerald R. Fink

ABSTRACT During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.


1999 ◽  
Vol 145 (4) ◽  
pp. 809-823 ◽  
Author(s):  
Ian R. Adams ◽  
John V. Kilmartin

We have examined the process of spindle pole body (SPB) duplication in Saccharomyces cerevisiae by electron microscopy and found several stages. These include the assembly, probably from the satellite, of a large plaque-like structure, the duplication plaque, on the cytoplasmic face of the half-bridge and its insertion into the nuclear envelope. We analyzed the role of the main SPB components in the formation of these structures by identifying them from an SPB core fraction by mass spectrometry. Temperature-sensitive mutants for two of the components, Spc29p and Nud1p, were prepared to partly define their function. The composition of two of the intermediates in SPB duplication, the satellite and the duplication plaque, was examined by immunoelectron microscopy. Both contain cytoplasmic SPB components showing that duplication has already been partly achieved by the end of the preceding cell cycle when the satellite is formed. We show that by overexpression of SPB components the structure of the satellite can be changed and SPB duplication inhibited by disrupting the attachment of the plaque-like intermediate to the half-bridge. We present a model for SPB duplication where binding of SPB components to either end of the bridge structure ensures two separate SPBs.


1973 ◽  
Vol 19 (11) ◽  
pp. 1389-1392 ◽  
Author(s):  
Lynn Rooney ◽  
Peter B. Moens

Photographic records of complete serial sections of asci in different stages of sporulation show that one of the four nuclear lobes produced during meiosis in the ascus of the yeast Wickerhamia fluorescens has a complex spindle-pole body, which is the site from where the presumptive ascospore wall, or prospore wall, develops and eventually surrounds the ascospore nucleus and associated cytoplasm. The three remaining nuclei develop spindle-pole bodies and prospore walls to lesser and varying degrees. With few exceptions, all three degenerate. The outer membrane of the prospore wall forms a fold, or rim, on the outside of the spore. Thickening of the spore wall takes place first in the asymmetric ring, then around the spore body, and finally at the site where the nucleus is associated with the wall. It is shown that ascospore delimitation in W. fluorescens and Saccharomyces cerevisiae are similar to each other, and that it differs from the type observed in a number of Euascomycetes.


2006 ◽  
Vol 173 (6) ◽  
pp. 867-877 ◽  
Author(s):  
Sam Li ◽  
Alan M. Sandercock ◽  
Paul Conduit ◽  
Carol V. Robinson ◽  
Roger L. Williams ◽  
...  

Centrins are calmodulin-like proteins present in centrosomes and yeast spindle pole bodies (SPBs) and have essential functions in their duplication. The Saccharomyces cerevisiae centrin, Cdc31p, binds Sfi1p on multiple conserved repeats; both proteins localize to the SPB half-bridge, where the new SPB is assembled. The crystal structures of Sfi1p–centrin complexes containing several repeats show Sfi1p as an α helix with centrins wrapped around each repeat and similar centrin–centrin contacts between each repeat. Electron microscopy (EM) shadowing of an Sfi1p–centrin complex with 15 Sfi1 repeats and 15 centrins bound showed filaments 60 nm long, compatible with all the Sfi1 repeats as a continuous α helix. Immuno-EM localization of the Sfi1p N and C termini showed Sfi1p–centrin filaments spanning the length of the half-bridge with the Sfi1p N terminus at the SPB. This suggests a model for SPB duplication where the half-bridge doubles in length by association of the Sfi1p C termini, thereby providing a new Sfi1p N terminus to initiate SPB assembly.


1997 ◽  
Vol 137 (3) ◽  
pp. 539-553 ◽  
Author(s):  
Heather B. McDonald ◽  
Breck Byers

Proteasome-mediated protein degradation is a key regulatory mechanism in a diversity of complex processes, including the control of cell cycle progression. The selection of substrates for degradation clearly depends on the specificity of ubiquitination mechanisms, but further regulation may occur within the proteasomal 19S cap complexes, which attach to the ends of the 20S proteolytic core and are thought to control entry of substrates into the core. We have characterized a gene from Saccharomyces cerevisiae that displays extensive sequence similarity to members of a family of ATPases that are components of the 19S complex, including human subunit p42 and S. cerevisiae SUG1/ CIM3 and CIM5 products. This gene, termed PCS1 (for proteasomal cap subunit), is identical to the recently described SUG2 gene (Russell, S.J., U.G. Sathyanarayana, and S.A. Johnston. 1996. J. Biol. Chem. 271:32810– 32817). We have shown that PCS1 function is essential for viability. A temperature-sensitive pcs1 strain arrests principally in the second cycle after transfer to the restrictive temperature, blocking as large-budded cells with a G2 content of unsegregated DNA. EM reveals that each arrested pcs1 cell has failed to duplicate its spindle pole body (SPB), which becomes enlarged as in other monopolar mutants. Additionally, we have shown localization of a functional Pcs1–green fluorescent protein fusion to the nucleus throughout the cell cycle. We hypothesize that Pcs1p plays a role in the degradation of certain potentially nuclear component(s) in a manner that specifically is required for SPB duplication.


2004 ◽  
Vol 3 (2) ◽  
pp. 447-458 ◽  
Author(s):  
Corine K. Lau ◽  
Thomas H. Giddings ◽  
Mark Winey

ABSTRACT Both the spindle pole body (SPB) and the nuclear pore complex (NPC) are essential organelles embedded in the nuclear envelope throughout the life cycle of the budding yeast Saccharomyces cerevisiae. However, the mechanism by which these two multisubunit structures are inserted into the nuclear envelope during their biogenesis is not well understood. We have previously shown that Ndc1p is the only known integral membrane protein that localizes to both the SPBs and the NPCs and is required for SPB duplication. For this study, we generated a novel temperature-sensitive (ts) allele of NDC1 to investigate the role of Ndc1p at the NPCs. Yeast cells carrying this allele (ndc1-39) failed to insert the SPB into the nuclear envelope at the restrictive temperature. Importantly, the double mutation of ndc1-39 and NPC assembly mutant nic96-1 resulted in cells with enhanced growth defects. While nuclear protein import and NPC distribution in the nuclear envelope were unaffected, ndc1-39 mutants failed to properly incorporate the nucleoporin Nup49p into NPCs. These results provide evidence that Ndc1p is required for NPC assembly in addition to its role in SPB duplication. We postulate that Ndc1p is crucial for the biogenesis of both the SPBs and the NPCs at the step of insertion into the nuclear envelope.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1439-1450
Author(s):  
Mark E Nickas ◽  
Aaron M Neiman

Abstract Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Δ/ady3Δ asci that do form contain fewer than four spores. The sporulation defect in ady3Δ/ady3Δ cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Δ/ady3Δ cells. In mpc70Δ/mpc70Δ cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.


Sign in / Sign up

Export Citation Format

Share Document