scholarly journals Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons.

1985 ◽  
Vol 101 (5) ◽  
pp. 1977-1989 ◽  
Author(s):  
L Ellis ◽  
I Wallis ◽  
E Abreu ◽  
K H Pfenninger

This study describes the preparation of a membrane subfraction from isolated nerve growth cone particles (GCPs) (see Pfenninger, K. H., L. Ellis, M. P. Johnson, L. B. Friedman, and S. Somlo, 1983, Cell, 35:573-584) and the identification in this fraction of a glycoprotein expressed during neurite growth. While approximately 40 major polypeptides are visible in Coomassie Blue-stained SDS polyacrylamide gels of pelleted (partially disrupted) GCPs, a salt-washed membrane fraction prepared from lysed, detergent-permeabilized GCPs contains only 14% of this protein and has an unusually simple polypeptide pattern of seven major bands. Monoclonal antibodies have been generated to GCP membranes isolated from fetal rat brain. These antibodies have been screened differentially with synaptosomes from adult rat brain in order to identify those which recognize antigens expressed selectively during neurite growth. One such antibody (termed 5B4) recognizes a developmentally regulated membrane glycoprotein that is enriched in GCP membranes and expressed in fetal neurons sprouting in vitro. The 5B4 antigen in fetal brain migrates in SDS polyacrylamide gels as a diffuse band of approximately 185-255 kD, is rich in sialic acid, and consists of a small family of isoelectric variants. Freezing-thawing and neuraminidase digestion result in the cleavage of the native antigen into two new species migrating diffusely around 200 and 160 kD. Prolonged neuraminidase digestion sharpens these bands at about 180 and 135 kD, respectively. In the mature brain, antibody 5B4 recognizes a sparse polypeptide migrating at approximately 140 kD. As shown in the following paper (Wallis, I., L. Ellis, K. Suh, and K. H. Pfenninger, 1985, J. Cell Biol., 101:1990-1998), the fetal antigen is specifically associated with regions of neuronal sprouting and, therefore, can be used as a molecular marker of neurite growth.

2016 ◽  
Vol 4 (2) ◽  
pp. 211-215
Author(s):  
L. Liubich ◽  
M. Lisyany ◽  
T. Malysheva ◽  
V. Semenova ◽  
L. Staino ◽  
...  

One of the directions of cell therapy being developed for brain gliomas is the use of the neurogenic stem and progenitor cells (NSCs/NPCs). There are data on the anti-tumor and immunomodulating properties of the NSCs/NPCs the mechanisms of which were not disclosed yet. One of the potential targets for tumor therapy is the transforming growth factor β (TGF-β1) which is thought to be one of the key molecules in the regulation of proliferation, differentiation and cell survival or apoptosis. In the view of available information about the possibility of TGF-β1 production by the mammalian multipotent NSCs/NPCs, the aim of this work was to study the TGF-β1-positive cells in the dynamics of cultivation of fetal brain neurogenic cells as a potential source of anti-tumor or immunomodulating effects of these cells.Material and methods. The fetal rat brain cells on 14th (E14) day of gestation were used as the source for cultivation in standard conditions (DМЕМ + 1 % fetal bovine serum) and studied on the 2nd and 37thday by morphometry and immunocytochemistry.Results. In the fetal rat brain cell cultures, the TGF-β1-positive cells made 22.04 ± 2.33 % and the nestin-positive cells made 49.16 ± 10.60 % of the total cells number. The morphometric parameters of TGF-β1-positive cells exceeded the corresponding values of negative cells (average values of cross-sectional areas of the cytoplasm, cross-sectional areas of the nucleus, nuclear-cytoplasmic ratio). During cultivation the relative amount of TGF-β1-positive cells was slightly decreased 15.27 ± 9.80 % (p = 0.7) and their sizes were increased. On the 37th day of cultivation the sizes of TGF-β1-positive and their nuclei were smaller in the comparison with the TGF-β1-negative cells.Conclusions. The presence of TGF-β1 expression by part of neurogenic cells of fetal rat brain (E14) in vitro was found, which persisted throughout cultivation (~5 weeks). Significant quantitative differences of morphometric parameters of TGF-β1-positive and negative cells were detected.


1989 ◽  
Vol 16 (3) ◽  
pp. 281-286
Author(s):  
Olof Tottmar ◽  
Maria Söderbäck ◽  
Anders Aspberg

The development of monoamine oxidase (MAO) and aldehyde dehydrogenase (ALDH) in reaggregation cultures of fetal rat brain cells was compared with that of enzymatic markers for glial and neuronal cells. Only MAO-A was detected in the cultures during the first week, but, during the following three weeks, the activity of MAO-B increased more rapidly than that of MAO-A. The ratio MAO-A/MAO-B in four-week aggregates was close to that found in the adult rat brain. The activity of ALDH started to increase rapidly after 15 days, and the developmental pattern was intermediate to those of the glial and neuronal markers. The activity after four weeks was close to that found in the adult rat brain. Epidermal growth factor (EGF) caused a slight decrease in the activities of the low-Km ALDH (after four weeks) and the neuronal marker, choline acetyltransferase (after two weeks), whereas the other markers were not affected. By contrast, the activities of MAO-A and MAO-B were greatly increased during almost the entire culture period. It is suggested that this effect of EGF was the result of increased mitotic activity and/or biochemical differentiation of other cell types present in the cell aggregates, e.g. capillary endothelial cells.


1990 ◽  
Vol 81 (2) ◽  
pp. 130-140 ◽  
Author(s):  
O. Engebraaten ◽  
R. Bjerkvig ◽  
M. Lund-Johansen ◽  
K. Wester ◽  
P.-H. Pedersen ◽  
...  

2017 ◽  
Vol 39 (4) ◽  
pp. 258-263 ◽  
Author(s):  
L D Liubich ◽  
L M Kovalevska ◽  
M I Lisyany ◽  
V M Semenova ◽  
T A Malysheva ◽  
...  

The aim of the work was to study the impact of fetal rat brain cell supernatant (FRBCS) on the expression of transforming growth factor β1 (TGF-β1) and p53 in C6 cells of rat glioma in vitro. Materials and Methods: FRBCS was obtained from suspensions of fetal rat brain cells on the 14th (E14) day of gestation. C6 glioma cells were cultured for 48 h in the presence of FRBCS or FRBCS + anti-TGF-β1 monoclonal antibody. Immunocytochemical staining for TGF-β1 and p53 was performed. Results: The proportion of TGF-β1-immunopositive tumor cells in C6 glioma cultures was statistically significantly higher than in the control cell cultures of normal fetal rat brain. FRBCS reduced the proportion of TGF-β1-immunopositive tumor cells and increased the proportion of p53-immunopositive cells in C6 glioma cultures. In cells cultured with FRBCS + anti-TGF-β1 monoclonal antibody, the above effects of FRBCS were abrogated. Conclusion: The obtained results suggest that TGF-β1 seems to be responsible for decrease in TGF-β1 expression and increase in p53 expression in C6 glioma cells treated with FRBCS.


1993 ◽  
Vol 52 (3) ◽  
pp. 295 ◽  
Author(s):  
Kirsten Marienhagen ◽  
Paal-Henning Pedersen ◽  
Sverre Mork ◽  
Rolf Bierkvig

1994 ◽  
Vol 20 (2) ◽  
pp. 130-143 ◽  
Author(s):  
K. Marienhagen ◽  
P.-H. Pedersen ◽  
A. J. A. Terzis ◽  
O. D. Laerum ◽  
H. Arnold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document