scholarly journals Common structural domains in the sarcoplasmic reticulum Ca-ATPase and the transverse tubule Mg-ATPase.

1987 ◽  
Vol 104 (3) ◽  
pp. 461-472 ◽  
Author(s):  
E Damiani ◽  
A Margreth ◽  
A Furlan ◽  
A S Dahms ◽  
J Arnn ◽  
...  

Transverse tubule (TT) membranes isolated from chicken skeletal muscle possess a very active magnesium-stimulated ATPase (Mg-ATPase) activity. The Mg-ATPase has been tentatively identified as a 102-kD concanavalin A (Con A)-binding glycoprotein comprising 80% of the integral membrane protein (Okamoto, V.R., 1985, Arch. Biochem. Biophys., 237:43-54). To firmly identify the Mg-ATPase as the 102-kD TT component and to characterize the structural relationship between this protein and the closely related sarcoplasmic reticulum (SR) Ca-ATPase, polyclonal antibodies were raised against the purified SR Ca-ATPase and the TT 102-kD glycoprotein, and the immunological relationship between the two ATPases was studied by means of Western immunoblots and enzyme-linked immunosorbent assays (ELISA). Anti-chicken and anti-rabbit SR Ca-ATPase antibodies were not able to distinguish between the TT 102-kD glycoprotein and the SR Ca-ATPase. The SR Ca-ATPase and the putative 102-kD TT Mg-ATPase also possess common structural elements, as indicated by amino acid compositional and peptide mapping analyses. The two 102-kD proteins exhibit similar amino acid compositions, especially with regard to the population of charged amino acid residues. Furthermore, one-dimensional peptide maps of the two proteins, and immunoblots thereof, show striking similarities indicating that the two proteins share many common epitopes and peptide domains. Polyclonal antibodies raised against the purified TT 102-kD glycoprotein were localized by indirect immunofluorescence exclusively in the TT-rich I bands of the muscle cell. The antibodies substantially inhibit the Mg-ATPase activity of isolated TT vesicles, and Con A pretreatment could prevent antibody inhibition of TT Mg-ATPase activity. Further, the binding of antibodies to intact TT vesicles could be reduced by prior treatment with Con A. We conclude that the TT 102-kD glycoprotein is the TT Mg-ATPase and that a high degree of structural homology exists between this protein and the SR Ca-ATPase.

1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


2021 ◽  
Vol 22 (16) ◽  
pp. 8964
Author(s):  
Sara Ragucci ◽  
Daniela Bulgari ◽  
Nicola Landi ◽  
Rosita Russo ◽  
Angela Clemente ◽  
...  

Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.


1987 ◽  
Vol 104 (5) ◽  
pp. 1143-1156 ◽  
Author(s):  
C M Snow ◽  
A Senior ◽  
L Gerace

Using monoclonal antibodies we identified a group of eight polypeptides of rat liver nuclear envelopes that have common epitopes. Most or all of these proteins are structurally distinct, as shown by tryptic peptide mapping and analysis with polyclonal antibodies. While these polypeptides are relatively tightly bound to nuclear membranes, only one is an integral membrane protein. The eight antigens cofractionate with the nuclear pore complex under various conditions of ionic strength and detergent. It can be seen by immunofluorescence microscopy that the monoclonal antibodies reacting with these antigens stain the nuclear surface of interphase cells in a finely punctate pattern. When the nuclear envelope is disassembled and subsequently reformed during mitosis, the proteins are reversibly dispersed throughout the cytoplasm in the form of minute foci. By EM immunogold localization on isolated nuclear envelopes, the monoclonal antibodies label exclusively the nuclear pore complex, at both its nucleoplasmic and cytoplasmic margins. Considered together, our biochemical and localization data indicate that the eight nuclear envelope polypeptides are pore complex components. As shown in the accompanying paper (Holt, G. D., C. M. Snow, A. Senior, R. S. Haltiwanger, L. Gerace, and G. W. Hart, J. Cell Biol., 104:1157-1164) these eight polypeptides contain a novel form of glycosylation, O-linked N-acetylglucosamine. The relative abundance and disposition of these O-linked glycoproteins in the pore complex are consistent with their having a role in nucleocytoplasmic transport.


2001 ◽  
Vol 8 (6) ◽  
pp. 1126-1130
Author(s):  
J. N. Seah ◽  
J. Kwang

ABSTRACT A murine monoclonal antibody (MAb) reactive to H27 flagellin antigen was produced and characterized. Forty-nine partially purified native H-type flagellins were used to evaluate the specificity of the MAb. The fliC gene of H27 is 1,464 bp in length (487 amino acids [aa]; 50.88 kDa). The central variable region (CVR) of the H27 flagellin gene was defined by comparison with flagellin sequences derived from H8, H34, and H49. To study the distribution of antigenic epitopes, the CVR covering amino acid residues 70 to 457 (388 aa) was dissected into seven overlapping fragments. Fragments carrying the H-type-specific antigenic determinants were identified by H27-specific antiserum. Polyclonal antibodies raised against different H-type flagellin proteins were used to determine the cross-reactive determinants. Three fragments, spanning amino acid residues 240 to 380, which carried the potential H-specific determinants were used for MAb production. A MAb specific to H27 was produced, and the specific epitope was mapped to amino acid residues 330 to 340. In this study, we produced MAbs from predetermined H27-specific polypeptides and used whole flagellin in enzyme-linked immunosorbent assays to circumvent the interference of anti-glutathione S-transferase antibodies. These factors when combined could help to improve the identification of the desired MAb.


1989 ◽  
Vol 108 (6) ◽  
pp. 2069-2082 ◽  
Author(s):  
S D Georgatos ◽  
I Maroulakou ◽  
G Blobel

Previous studies have shown that turkey erythrocyte lamin B is anchored to the nuclear envelope via a 58-kD integral membrane protein termed p58 or lamin B receptor (Worman H. J., J. Yuan, G. Blobel, and S. D. Georgatos. 1988. Proc. Natl. Acad. Sci. USA. 85:8531-8534). We now identify a p58 analogue in the yeast Saccharomyces cerevisiae. Turkey erythrocyte lamin B binds to yeast urea-extracted nuclear envelopes with high affinity, associating predominantly with a 58-kD polypeptide. This yeast polypeptide is recognized by polyclonal antibodies against turkey p58, partitions entirely with the nuclear fraction, remains membrane bound after urea extraction of the nuclear envelopes, and is structurally similar to turkey p58 by peptide mapping criteria. Using polyclonal antibodies against turkey erythrocyte lamins A and B, we also identify two yeast lamin forms. The yeast lamin B analogue has a molecular mass of 66 kD and is structurally related to erythrocyte lamin B. Moreover, the yeast lamin B analogue partitions exclusively with the nuclear envelope fraction, is quantitatively removed from the envelopes by urea extraction, and binds to turkey lamin A and vimentin. As many higher eukaryotic lamin B forms, the yeast analogue is chemically heterogeneous comprising two serologically related species with different charge characteristics. Antibodies against turkey lamin A detect a 74-kD yeast protein, slightly larger than the turkey lamin A. It is more abundant than the yeast lamin B analogue and partitions between a soluble cytoplasmic fraction and a nuclear envelope fraction. The yeast lamin A analogue can be extracted from the nuclear envelope by urea, shows structural similarity to turkey and rat lamin A, and binds to isolated turkey lamin B. These data indicate that analogues of typical nuclear lamina components (lamins A and B, as well as lamin B receptor) are present in yeast and behave as their vertebrate counterparts.


1991 ◽  
Vol 277 (1) ◽  
pp. 39-45 ◽  
Author(s):  
D Carré-Eusèbe ◽  
F Lederer ◽  
K H D Lê ◽  
S M Elsevier

Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid.


2001 ◽  
Vol 353 (3) ◽  
pp. 521-529 ◽  
Author(s):  
Alicia MEGÍAS ◽  
M. Mar MARTÍNEZ-SENAC ◽  
Jerónimo DELGADO ◽  
Ana SABORIDO

Transverse tubule (T-tubule) ecto-ATPase from chicken skeletal muscle is an integral membrane glycoprotein that seems to exist as a homodimer and exhibits unusual properties. Treatment of T-tubule membranes with concanavalin A (Con A) did not significantly affect the thermal variation of the fluorescence anisotropy of vesicles labelled with 1,6-diphenyl-1,3,5-hexatriene or trimethylammonium-1,6-diphenyl-1,3,5-hexatriene. Cross-linking of membrane components with glutaraldehyde elicited effects on ecto-ATPase activity very similar to those of Con A treatment: a severalfold increase in activity, a decrease in Triton X-100 sensitivity and a requirement to be present before ATP to exert its action. In addition, glutaraldehyde and Con A normalized the temperature dependence and the kinetic behaviour of the enzyme. Membrane-perturbing agents (detergents, alcohols and cholesterol oxidase), with the sole exception of digitonin, caused a marked decrease in ecto-ATPase activity; the prior presence of Con A prevented this inhibition, whereas when the lectin was added after the membrane perturbing agent, recovery of the activity was not always possible. The addition of nucleotides before Con A led to a suppression of ecto-ATPase stimulation; it occurred when the nucleotide was hydrolysed (ATP or UTP) and when it was not (adenosine 5′-[β,γ-imido]triphosphate) and even in the presence of 3mM Pi. A model is proposed for the complex regulatory mechanisms of chicken T-tubule ecto-ATPase that involves the occurrence of two different catalytic states in an equilibrium modulated by lectins and cross-linking agents, by the structure of the membrane and by the presence of ligands for a regulatory site.


2003 ◽  
Vol 185 (6) ◽  
pp. 1958-1966 ◽  
Author(s):  
Karuna P. Karunakaran ◽  
Yasuyuki Noguchi ◽  
Timothy D. Read ◽  
Artem Cherkasov ◽  
Jeffrey Kwee ◽  
...  

ABSTRACT Genome sequencing revealed that all six chlamydiae genomes contain three groEL-like genes (groEL1, groEL2, and groEL3). Phylogenetic analysis of groEL1, groEL2, and groEL3 indicates that these genes are likely to have been present in chlamydiae since the beginning of the lineage. Comparison of deduced amino acid sequences of the three groEL genes with those of other organisms showed high homology only for groEL1, although comparison of critical amino acid residues that are required for polypeptide binding of the Escherichia coli chaperonin GroEL revealed substantial conservation in all three chlamydial GroELs. This was further supported by three-dimensional structural predictions. All three genes are expressed constitutively throughout the developmental cycle of Chlamydia trachomatis, although groEL1 is expressed at much higher levels than are groEL2 and groEL3. Transcription of groEL1, but not groEL2 and groEL3, was elevated when HeLa cells infected with C. trachomatis were subjected to heat shock. Western blot analysis with polyclonal antibodies raised against recombinant GroEL1, GroEL2, and GroEL3 demonstrated the presence of the three proteins in C. trachomatis elementary bodies, with GroEL1 being present in the largest amount. Only C. trachomatis groEL1 and groES together complemented a temperature-sensitive E. coli groEL mutant. Complementation did not occur with groEL2 or groEL3 alone or together with groES. The role for each of the three GroELs in the chlamydial developmental cycle and in disease pathogenesis requires further study.


Sign in / Sign up

Export Citation Format

Share Document