scholarly journals Amphibian neural crest cell migration on purified extracellular matrix components: a chondroitin sulfate proteoglycan inhibits locomotion on fibronectin substrates.

1987 ◽  
Vol 105 (6) ◽  
pp. 2511-2521 ◽  
Author(s):  
R Perris ◽  
S Johansson

The ability of purified extracellular matrix components to promote the initial migration of amphibian neural crest (NC) cells was quantitatively investigated in vitro. NC cells migrated avidly on fibronectin (FN), displaying progressively more extensive dispersion at increasing amounts of material incorporated in the substrate. In contrast, dispersion on laminin substrates was optimal at low protein concentrations but strongly reduced at high concentrations. NC cells were unable to migrate on substrates containing a high molecular mass chondroitin sulfate proteoglycan (ChSP). When proteolytic peptides, representing isolated functional domains of the FN molecule, were tested as potential migration substrates, the cell binding region of the molecule (105 kD) was found to be as active as the intact FN. A 31-kD heparin-binding fragment also stimulated NC cell migration, whereas NC cells dispersed to a markedly lower extent on the isolated collagen-binding domain (40 kD), or the latter domain linked to the NH2-terminal part of the FN molecule. Migration on the intact FN was partially inhibited by antibodies directed against the 105- and 31-kD fragments, respectively; dispersion was further decreased when the antibodies were used in combination. Addition of the ChSP to the culture medium dramatically perturbed NC cell migration on substrates of FN, as well as of 105- or 31-kD fragments. However, preincubation of isolated cells or substrates with ChSP followed by washing did not affect NC cell movement. The use of substrates consisting of different relative amounts of ChSP and the 105-kD peptide revealed that ChSP counteracted the motility-promoting activity of the 105-kD FN fragment in a concentration-dependent manner also when bound to the substrate. Our results indicate that NC cell migration on FN involves two separate domains of the molecule, and that ChSP can modulate the migratory behavior of NC cells moving along FN-rich pathways and may therefore influence directionally and subsequent localization of NC cells in the embryo.

1983 ◽  
Vol 61 (1) ◽  
pp. 299-323
Author(s):  
C.A. Erickson ◽  
E.A. Turley

Extracellular matrix components such as collagen, fibronectin and sulphated glycosaminoglycans can act as substrata that promote neural crest motility in vitro, in the absence of serum. The cells appear to be less adhesive and move more randomly on collagen or chondroitin sulphate substrata than on fibronectin substrata. Cells do not spread or become motile on plastic dishes to which hyaluronate has been bound, presumably owing to weak adhesion to this surface. Hyaluronate added to the medium alone has little effect on cell motility. When combinations of matrix molecules are used as substrata, however, the presence of fibronectin increases spreading, directional persistence of cell motility and speed of movement above that observed on collagen alone. When added to fibronectin, chondroitin sulphate appears to reduce adhesions slightly, since the cells are more rounded. Hyaluronate added in the medium significantly reduces the extent, speed and directionality of movement on fibronectin substrata. The presence of collagen in combination with fibronectin plus glycosaminoglycans does not have a noticeable effect on cell motile behaviour, beyond that observed with fibronectin alone. The effects of combinations of matrix compounds on neural crest cell motility are thus predictable, and can be explained in terms of the known adhesive properties and reported binding interactions of these molecules. These studies in vitro are compared with neural crest cell motility in vivo.


1988 ◽  
Vol 36 (10) ◽  
pp. 1211-1221 ◽  
Author(s):  
M W Lark ◽  
T K Yeo ◽  
H Mar ◽  
S Lara ◽  
I Hellström ◽  
...  

We generated a monoclonal antibody (Mab) against a large chondroitin sulfate proteoglycan (CSPG) isolated from bovine aorta. This Mab (941) immunoprecipitates a CSPG synthesized by cultured monkey arterial smooth muscle cells. The immunoprecipitated CSPG is totally susceptible to chondroitinase ABC digestion and possesses a core glycoprotein of Mr approximately 400-500 KD. By use of immunofluorescence light microscopy and immunogold electron microscopy, the PG recognized by this Mab was shown to be deposited in the extracellular matrix of monkey arterial smooth muscle cell cultures in clusters which were not part of other fibrous matrix components and not associated with the cell's plasma membrane. With similar immunolocalization techniques, the CSPG antigen was found enriched in the intima and present in the medial portions of normal blood vessels, as well as in the interstitial matrix of thickened intimal lesions of atherosclerotic vessels. Immunoelectron microscopy revealed that this CSPG was confined principally to the space within the extracellular matrix not occupied by other matrix components, such as collagen and elastic fibers. These results indicate that this particular proteoglycan has a specific but restricted distribution in the extracellular matrix of arterial tissue.


2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 425-432 ◽  
Author(s):  
X. Zhang ◽  
M.P. Sarras

Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell adhesion studies indicated that isolated nematocytes could bind to substrata coated with isolated hydra mesoglea, fibronectin and type IV collagen. Under these conditions, nematocytes could be observed to migrate on some of these extracellular matrix components. By modifying previously described hydra grafting techniques, two procedures were developed to test specifically the role of extracellular matrix components during in vivo I-cell migration in hydra. In one approach, the extracellular matrix structure of the apical half of the hydra graft was perturbed using beta-aminopropionitrile and beta-xyloside. In the second approach, grafts were treated with fibronectin, RGDS synthetic peptide and antibody to fibronectin after grafting was performed. In both cases, I-cell migration from the basal half to the apical half of the grafts was quantitatively analyzed. Statistical analysis indicated that beta-aminopropionitrile, fibronectin, RGDS synthetic peptide and antibody to fibronectin all were inhibitory to I-cell migration as compared to their respective controls. beta-xyloside treatment had no effect on interstitial cell migration. These results indicate the potential importance of cell-extracellular matrix interactions during in vivo I-cell migration in hydra.


2002 ◽  
Vol 282 (3) ◽  
pp. L484-L490 ◽  
Author(s):  
Yiqiong Wang ◽  
Kaori Sakamoto ◽  
Jody Khosla ◽  
Philip L. Sannes

Chondroitin sulfates and their related proteoglycans are components of extracellular matrix that act as key determinants of growth and differentiation characteristics of developing lungs. Changes in their immunohistochemical distribution during progressive organ maturation were examined with monospecific antibodies to chondroitin sulfate, a nonbasement membrane chondroitin sulfate proteoglycan, and the specific chondroitin sulfate-containing proteoglycan decorin in whole fetuses and lungs from newborn and adult rats. Alveolar and airway extracellular matrix immunostained heavily in the prenatal rat for both chondroitin sulfate and chondroitin sulfate proteoglycan, whereas decorin was confined to developing airways and vessels. These sites retained their respective levels of reactivity with all antibodies through 1–10 days postnatal but thereafter became progressively more diminished and focal in alveolar regions. The heavy staining seen early in development was interpreted to reflect a significant and wide distribution of chondroitin sulfates, chondroitin sulfate proteoglycans, and decorin in rapidly growing tissues, whereas the reduced and more focal reactivity observed at later time points coincided with known focal patterns of localization of fibrillar elements of the extracellular matrix and a more differentiated state.


Sign in / Sign up

Export Citation Format

Share Document