scholarly journals A map of photolytic and tryptic cleavage sites on the beta heavy chain of dynein ATPase from sea urchin sperm flagella.

1988 ◽  
Vol 106 (5) ◽  
pp. 1607-1614 ◽  
Author(s):  
G Mocz ◽  
W J Tang ◽  
I R Gibbons

NH2-terminal analysis of the alpha and beta heavy chain polypeptides (Mr greater than 400,000) from the outer arm dynein of sea urchin sperm flagella, compared with that of the 230,000- and 200,000-Mr peptides formed upon photocleavage of dynein by irradiation at 365 nm in the presence of vanadate and ATP, shows that the NH2 termini of the intact chains are acetylated and that the 230,000- and 200,000 Mr peptides constitute the amino- and carboxy-terminal portions of the heavy chains, respectively. Tryptic digestion of the beta heavy chain is known to separate it into two particles, termed fragments A and B, that sediment at 12S and 6S (Ow, R. A., W.-J. Y. Tang, G. Mocz, and I. R. Gibbons, 1987. J. Biol. Chem. 262:3409-3414). Immunoblots against monoclonal antibodies specific for epitopes on the beta heavy chain, used in conjunction with photoaffinity labeling, show that the ATPase-containing fragment A is derived from the amino-terminal region of the beta chain, with the two photolytic sites thought to be associated with the purine-binding and the gamma-phosphate-binding areas of the ATP-binding site spanning an approximately 100,000 Mr region near the middle of the intact beta chain. Fragment B is derived from the complementary carboxy-terminal region of the beta chain.

1994 ◽  
Vol 5 (1) ◽  
pp. 57-70 ◽  
Author(s):  
B H Gibbons ◽  
D J Asai ◽  
W J Tang ◽  
T S Hays ◽  
I R Gibbons

Transcripts approximately 14.5 kilobases in length from 14 different genes that encode for dynein heavy chains have been identified in poly(A)+ RNA from sea urchin embryos. Analysis of the changes in level of these dynein transcripts in response to deciliation, together with their sequence relatedness, suggests that 11 or more of these genes encode dynein isoforms that participate in regeneration of external cilia on the embryo, whereas the single gene whose deduced sequence closely resembles that of cytoplasmic dynein in other organisms appears not to be involved in this regeneration. The four consensus motifs for phosphate binding found previously in the beta heavy chain of sea urchin dynein are present in all five additional isoforms for which extended sequences have been obtained, suggesting that these sites play a significant role in dynein function. Sequence analysis of a approximately 400 amino acid region encompassing the putative hydrolytic ATP-binding site shows that the dynein genes fall into at least six distinct classes. Most of these classes in sea urchin have a high degree of sequence identity with one of the dynein heavy chain genes identified in Drosophila, indicating that the radiation of the dynein gene family into the present classes occurred at an early stage in the evolution of eukaryotes. Evolutionary changes in cytoplasmic dynein have been more constrained than those in the axonemal dyneins.


1994 ◽  
Vol 107 (2) ◽  
pp. 345-351 ◽  
Author(s):  
E. Yokota ◽  
I. Mabuchi

A novel dynein (C/A dynein), which is composed of C and A heavy chains, two intermediate chains and several light chains, was isolated from sea urchin sperm flagella. The C/A dynein was released by the treatment with 0.7 M NaCl plus 5 mM ATP from the axonemes depleted of outer arm 21 S dynein. Sedimentation coefficient of this dynein was estimated by sucrose density gradient centrifugation to be 22–23 S. The C/A dynein particle appeared to be composed of three distinct domains; two globular head domains and one rod domain as seen by negative staining electron microscopy. The mobility of ‘A’ heavy chain of C/A dynein on SDS-gel electrophoresis was similar to that of A heavy chains (A alpha and A beta) of 21 S dynein. However, UV-cleavage patterns of C and A heavy chains of C/A dynein were different from those of A heavy chains of 21 S dynein. Furthermore, an antiserum raised against A heavy chain of C/A dynein did not crossreact with A heavy chains of 21 S dynein. Under the conditions in which the C/A dynein was released, some of inner arms were removed concomitantly from axonemes as observed by electron microscopy. These results suggested that C/A dynein is a component of the inner arms.


1985 ◽  
Vol 101 (4) ◽  
pp. 1400-1412 ◽  
Author(s):  
W S Sale ◽  
U W Goodenough ◽  
J E Heuser

Outer-arm dynein from the sperm of the sea urchin S. purpuratus was adsorbed to mica flakes and visualized by the quick-freeze, deep-etch technique. Replicas reveal particles comprised of two globular heads joined by two irregularly shaped stems which make contact along their length. One head is pear-shaped (18.5 X 12.5 nm) and the other is spherical (14.5-nm diam). The stems are decorated by a complex of bead-like subunits. The same two-headed protein is found in the 21S dynein-1 fraction of sucrose gradients. The beta-heavy chain/intermediate chain 1 (beta/IC-1) dynein subfraction, produced by low-salt dialysis and zonal centrifugation of the high-salt-extracted dynein-1, contains only single-headed molecules with single stems. These heads are predominantly pear-shaped (18.5 X 12.5 nm). Since 21S dynein-1 contains two heavy chains (alpha and beta), and the beta/IC-1 subfraction is comprised of only the beta-heavy chain (Tang et al., 1982, J. Biol. Chem. 257: 508-515), we conclude that each head is formed by a heavy chain, that the pear-shaped head contains the beta-heavy chain, and that the spherical head contains the alpha-heavy chain. The in situ outer dynein arms of demembranated sperm were also studied by the quick-freeze, deep-etch method. When frozen in reactivation buffer devoid of ATP, each arm consists of a large globular head that attaches to the A-microtubule by distally skewed subunits and attaches to the B-microtubule by a slender stalk. In ATP, this head shifts its orientation such that it can be seen to be constructed from two globular domains. We offer possible correlates between the in situ and the in vitro images, and we compare the structure of sea-urchin dynein with dynein previously described from Chlamydomonas and Tetrahymena.


1989 ◽  
Vol 9 (6) ◽  
pp. 2648-2656
Author(s):  
A MacAuley ◽  
J A Cooper

The kinase activity of p60c-src is derepressed by removal of phosphate from Tyr-527, mutation of this residue to Phe, or binding of a carboxy-terminal antibody. We have compared the structures of repressed and active p60c-src, using proteases. All forms of p60c-src are susceptible to proteolysis at the boundary between the amino-terminal region and the kinase domain, but there are several sites elsewhere that are more sensitive to trypsin digestion in repressed than in derepressed forms of p60c-src. The carboxy-terminal tail (containing Tyr-527) is more sensitive to digestion by pronase E and thermolysin when Tyr-527 is not phosphorylated. The kinase domain fragment released with trypsin has kinase activity. Relative to intact p60c-src, the kinase domain fragment shows altered substrate specificity, diminished regulation by the phosphorylated carboxy terminus, and novel phosphorylation sites. The results identify parts of p60c-src that change conformation upon kinase activation and suggest functions for the amino-terminal region.


1987 ◽  
Author(s):  
A B Federici ◽  
S D Berkowitz

We have previously shown that carbohydrate (CHO) protects von Willebrand factor (vWF) from proteolytic degradation. We have now shown that removal of CHO from the vWF subunit exposes additional cleavage sites in the amino terminal region and that cleavages in this region are associated with loss of large multimers. We examined and compared the extent of large multimer loss with sites of subunit cleavage of native and GHO-modified vWF after treatment with plasmin, chymotrypsin, and trypsin. Highly purified vWF was treated with neuraminidase and β-galactosidase in the presence of proteinase inhibitors to remove 90-95% of the sialic acid and 45-50% of the D-galactose without loss of large multimers or diminution of the ristocetin cofactor activity. The extent and approximate location of subunit cleavage was determined by immunoblotting and monoclonal antibody epitope mapping. Multimeric analysis revealed an increasingly greater loss of large multimers when native vWF was digested with plasmin, chymotrypsin, and trypsin, respectively. Large multimer loss was more extensive with each enzyme after CHO-modification of vWF. On subunit analysis, plasmin, chymotrypsin, and trypsin were shown to produce both amino and carboxy terminal fragments. The number, location, and relative quantities of carboxy terminal fragments produced by these enzymes were unchanged after CHO modification. However, digestion of the amino terminal region was considerably more extensive as judged by a marked decrease or absence of the larger fragments seen when native vWF was digested, and by the appearance of new smaller molecular weight species. Thus, enzymatic digestion of vWF after removal of carbohydrate produced new cleavages in the amino terminal region but did not alter the location or extent of carboxy terminal cleavages. Therefore, the greater loss of large multimers that occurs after CHO modification is likely to be the result of cleavages in the amino terminal region of the molecule. It appears that by protecting the vWF subunit against amino terminal cleavage, carbohydrate inhibits the loss of large multimers.


1988 ◽  
Vol 107 (5) ◽  
pp. 1793-1797 ◽  
Author(s):  
W S Sale ◽  
L A Fox

Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP-containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity.


2007 ◽  
Vol 27 (4-5) ◽  
pp. 189-223 ◽  
Author(s):  
H. Raghuraman ◽  
Amitabha Chattopadhyay

Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid–protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin–membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.


1988 ◽  
Vol 107 (6) ◽  
pp. 2657-2667 ◽  
Author(s):  
A L Ingold ◽  
S A Cohn ◽  
J M Scholey

We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116-kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP-sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility.


1971 ◽  
Vol 133 (6) ◽  
pp. 1309-1324 ◽  
Author(s):  
Herbert Lindsley ◽  
Mart Mannik ◽  
Paul Bornstein

Immunological studies of rat skin collagen were carried out with a sensitive and quantitative radioimmunoassay. Hyperimmune rabbit antisera to rat skin collagen and isolated α2 chains were used. Iodine-labeled α chains and CNBr-produced peptides served as test antigens, and native collagen, α chains, and CNBr peptides were employed as inhibitors in the assay. The α1 and α2 chains were immunologically distinct. Although the α1 chain was not immunogenic, antibodies to α1 were detected in antisera to the intact collagen molecule. The major antigenic determinant of the α1 chain was located in α1-CB6 which constitutes the carboxy-terminal region of the chain. The α2 chain contained two non-cross-reacting antigenic determinants, one in the amino-terminal region (α2-CB1) and the other in the carboxy-terminal region (α2-CB5) of the chain. The native collagen molecule was less effective than isolated α chains in inhibiting binding of labeled peptides to antisera, indicating that antigenic determinants were less accessible in the triple helical molecule. These immunologic studies are consistent with preliminary comparative biochemical data which indicate that interspecies structural differences in collagen predominate at both the amino- and carboxy-terminal ends of the chains.


1989 ◽  
Vol 9 (4) ◽  
pp. 1445-1451 ◽  
Author(s):  
C J Green ◽  
R S Charles ◽  
B F Edwards ◽  
P H Johnson

A synthetic DNA probe designed to detect coding sequences for platelet factor 4 and connective tissue-activating peptide III (two human platelet alpha-granule proteins) was used to identify several similar sequences in total human DNA. Sequence analysis of a corresponding 3,201-base-pair EcoRI fragment isolated from a human genomic library demonstrated the existence of a variant of platelet factor 4, designated PF4var1. The gene for PF4var1 consisted of three exons and two introns. Exon 1 coded for a 34-amino-acid hydrophobic leader sequence that had 70% sequence homology with the leader sequence for PF4 but, in contrast, contained a hydrophilic amino-terminal region with four arginine residues. Exon 2 coded for a 42-amino-acid segment that was 100% identical with the corresponding segment of the mature PF4 sequence containing the amino-terminal and disulfide-bonded core regions. Exon 3 coded for the 28-residue carboxy-terminal region corresponding to a domain specifying heparin-binding and cellular chemotaxis. However, PF4var1 had amino acid differences at three positions in the lysine-rich carboxy-terminal end that were all conserved among human, bovine, and rat PF4s. These differences should significantly affect the secondary structure and heparin-binding properties of the protein based on considerations of the bovine PF4 crystal structure. By comparing the PF4var1 genomic sequence with the known human cDNA and the rat genomic PF4-coding sequences, we identified potential genetic regulatory regions for PF4var1. Rat PF4 and human PF4var1 genes had identical 18-base sequences 5' to the promoter region. The intron positions appeared to correspond approximately to the boundaries of the protein functional domains.


Sign in / Sign up

Export Citation Format

Share Document