scholarly journals Cellular heterogeneity in cultured human chondrocytes identified by antibodies specific for alpha 2(XI) collagen chains.

1989 ◽  
Vol 109 (3) ◽  
pp. 1363-1369 ◽  
Author(s):  
B Swoboda ◽  
R Holmdahl ◽  
H Stöss ◽  
K von der Mark

Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

1996 ◽  
Vol 314 (1) ◽  
pp. 327-332 ◽  
Author(s):  
Mohammad DIAB ◽  
Jiann-Jiu WU ◽  
David R. EYRE

Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 617
Author(s):  
Manuel J. Seixas ◽  
Eva Martins ◽  
Rui L. Reis ◽  
Tiago H. Silva

With the worldwide increase of fisheries, fish wastes have had a similar increase, alternatively they can be seen as a source of novel substances for the improvement of society’s wellbeing. Elasmobranchs are a subclass fished in high amounts, with some species being mainly bycatch. They possess an endoskeleton composed mainly by cartilage, from which chondroitin sulfate is currently obtained. Their use as a viable source for extraction of type II collagen has been hypothesized with the envisaging of a biomedical application, namely in biomaterials production. In the present work, raw cartilage from shark (Prionace glauca) and ray (Zeachara chilensis and Bathyraja brachyurops) was obtained from a fish processing company and submitted to acidic and enzymatic extractions, to produce acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). From all the extractions, P. glauca PSC had the highest yield (3.5%), followed by ray ASC (0.92%), ray PSC (0.50%), and P. glauca ASC (0.15%). All the extracts showed similar properties, with the SDS-PAGE profiles being compatible with the presence of both type I and type II collagens. Moreover, the collagen extracts exhibited the competence to maintain their conformation at human basal temperature, presenting a denaturation temperature higher than 37 °C. Hydrogels were produced using P. glauca PSC combined with shark chondroitin sulfate, with the objective of mimicking the human cartilage extracellular matrix. These hydrogels were cohesive and structurally-stable at 37 °C, with rheological measurements exhibiting a conformation of an elastic solid when submitted to shear strain with a frequency up to 4 Hz. This work revealed a sustainable strategy for the valorization of fisheries’ by-products, within the concept of a circular economy, consisting of the use of P. glauca, Z. chilensis, and B. brachyurops cartilage for the extraction of collagen, which would be further employed in the development of hydrogels as a proof of concept of its biotechnological potential, ultimately envisaging its use in marine biomaterials to regenerate damaged cartilaginous tissues.


2004 ◽  
Vol 24 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Takahiro Ohno ◽  
Keizo Tanisaka ◽  
Yosuke Hiraoka ◽  
Takashi Ushida ◽  
Tamotsu Tamaki ◽  
...  

2016 ◽  
Vol 60 (2) ◽  
Author(s):  
J. Melrose

<p>Loose bodies are fragments of cartilage or bone present in the synovial fluid. In the present study we assessed if loose bodies could be used as a source of autologous human chondrocytes for experimental purposes. Histochemical examination of loose bodies and differential enzymatic digestions were undertaken, the isolated cells were cultured in alginate bead microspheres and immunolocalisations were undertaken for chondrogenic markers such as aggrecan, and type II collagen. Isolated loose body cells had high viability (≥90% viable), expressed chondrogenic markers (aggrecan, type II collagen) but no type I collagen. Loose bodies may be a useful source of autologous chondrocytes of high viability.</p>


Hand Surgery ◽  
1996 ◽  
Vol 01 (01) ◽  
pp. 79-88
Author(s):  
K.Y. Chiu ◽  
J. Xie ◽  
W.K. Ngai ◽  
K.S.E. Cheah ◽  
T. Kuffner ◽  
...  

Full thickness articular bone-cartilage defects were created in the acetabulae of 35 adult rabbits. A double-layered titanium mesh was used in each hip so as to substitute for the bone defect. Free periosteal grafting was then sutured over the mesh, and the hip was subjected to continuous passive motion for 1 week in each rabbit. Under light microscopy, islands of chondroid tissues were shown to be present from 2 weeks onwards, and the dominant reparative tissue was hyaline-like cartilage after 6 months. The normal degree of metachromasia of the matrix by Safranin-0 staining was achieved in most but not all the specimens that were hyaline-like under the microscope. Analysis of the collagen types synthesised by the grafts revealed a combination of both type II and type I collagens. Immunohistochemical staining showed intense positive staining around the chondrocyte lacunae when stained with anti-type II collagen antibodies with the one-year group of rabbits. Although metachromasia of the matrix and collagen typing suggested that fibrocartilage was formed in addition to the hyaline cartilage, the gross appearance and nature of reparative tissues formed were quite promising. Periosteal grafting over a metallic, non-biological surface that provided the shape of the osseous defect in a massive articular defect was therefore a possible alternative.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document