scholarly journals Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles.

1994 ◽  
Vol 127 (6) ◽  
pp. 1671-1681 ◽  
Author(s):  
J F Dillman ◽  
K K Pfister

Two microtubule-stimulated ATPases, cytoplasmic dynein, and kinesin, are believed to be responsible for the intracellular movement of membrane-bound organelles in opposite directions along microtubules. An unresolved component of this model is the mechanism by which cells regulate these two motors to direct various membrane-bound organelles to their proper locations. To determine if phosphorylation may play a role in the regulation of cytoplasmic dynein, the in vivo phosphorylation state of cytoplasmic dynein from two cellular pools was examined. The entire cellular pool of brain cytoplasmic dynein was metabolically labeled by the infusion of [32P]orthophosphate into the cerebrospinal fluid of rat brain ventricles. To characterize the phosphorylation of dynein associated with anterograde membrane-bound organelles, the optic nerve fast axonal transport system was used. Using a monoclonal antibody to the 74-kD polypeptide of brain cytoplasmic dynein, the native dynein complex was immunoprecipitated from the radiolabled tissue extracts. Autoradiographs of one and two dimensional gels showed labeling of nearly all of the polypeptide isoforms of cytoplasmic dynein from rat brain. These polypeptides are phosphorylated on serine residues. Comparison of the amount of 32P incorporated into the dynein polypeptides revealed differences in the phosphorylation of dynein polypeptides from the anterograde and the cellular pools. Most interestingly, the 530-kD heavy chain of dynein appears to be phosphorylated to a lesser extent in the anterograde pool than in the cellular pool. Since the anterograde pool contains inactive dynein, while the entire cellular pool contains both inactive and active dynein, these results are consistent with the hypothesis that phosphorylation regulates the functional activity of cytoplasmic dynein.

1973 ◽  
Vol 133 (2) ◽  
pp. 387-389 ◽  
Author(s):  
M. Weller ◽  
R. Rodnight

The alkali-labile P content of membrane protein prepared from rapidly frozen rat brain was measured, CuSO4 being used to inhibit protein phosphatase activity during subcellular fractionation. The P content of the membrane fraction was significantly increased (+12%) over the control value by incubation of homogenates with ATP before fractionation. This suggests that the membrane protein in rat brain is normally only partially phosphorylated.


1994 ◽  
Vol 127 (4) ◽  
pp. 1009-1019 ◽  
Author(s):  
S X Lin ◽  
K L Ferro ◽  
C A Collins

Cytoplasmic dynein is a microtubule-binding protein which is considered to serve as a motor for retrograde organelle movement. In cultured fibroblasts, cytoplasmic dynein localizes primarily to lysosomes, membranous organelles whose movement and distribution in the cytoplasm have been shown to be dependent on the integrity of the microtubule cytoskeleton. We have recently identified conditions which lead to an apparent dissociation of dynein from lysosomes in vivo, indicating that alterations in membrane binding may be involved in the regulation of retrograde organelle movement (Lin, S. X. H., and C. A. Collins. 1993. J. Cell Sci. 105:579-588). Both brief serum withdrawal and low extracellular calcium levels induced this alteration, and the effect was reversed upon addition of serum or additional calcium. Here we demonstrate that the phosphorylation state of the dynein molecule is correlated with changes in its intracellular distribution in normal rat kidney fibroblasts. Dynein heavy chain phosphorylation level increased during serum starvation, and decreased back to control levels upon subsequent addition of serum. We found that okadaic acid, a phosphoprotein phosphatase inhibitor, mimicked the effects of serum starvation on both phosphorylation and the intracellular redistribution of dynein from a membrane-associated pool to one that was more soluble, with similar dose dependence for both phenomena. Cell fractionation by differential detergent extraction revealed that a higher proportion of dynein was present in a soluble pool after serum starvation than was found in comparable fractions from control cells. Our data indicate that cytoplasmic dynein is phosphorylated in vivo, and changes in phosphorylation state may be involved in a regulatory mechanism affecting the distribution of this protein among intracellular compartments.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S468-S468
Author(s):  
Jennifer K Callaway ◽  
Christine Molnar ◽  
Song T Yao ◽  
Bevyn Jarrott ◽  
R David Andrew

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S279-S279
Author(s):  
Victor E Yushmanov ◽  
Alexander Kharlamov ◽  
Eli J Wasserman ◽  
Fernando E Boada ◽  
Stephen C Jones

2013 ◽  
Vol 44 (S 01) ◽  
Author(s):  
M Breu ◽  
D Reisinger ◽  
D Wu ◽  
Y Zhang ◽  
A Fatemi ◽  
...  

1977 ◽  
Vol 37 (01) ◽  
pp. 073-080 ◽  
Author(s):  
Knut Gjesdal ◽  
Duncan S. Pepper

SummaryHuman platelet factor 4 (PF-4) showed a reaction of complete identity with PF-4 from Macaca mulatta when tested against rabbit anti-human-PF-4. Such immunoglobulin was used for quantitative precipitation of in vivo labelled PF-4 in monkey serum. The results suggest that the active protein had an intra-platelet half-life of about 21 hours. In vitro 125I-labelled human PF-4 was injected intravenously into two monkeys and isolated by immuno-precipita-tion from platelet-poor plasma and from platelets disrupted after gel-filtration. Plasma PF-4 was found to have a half-life of 7 to 11 hours. Some of the labelled PF-4 was associated with platelets and this fraction had a rapid initial disappearance rate and a subsequent half-life close to that of plasma PF-4. The results are compatible with the hypothesis that granular PF-4 belongs to a separate compartment, whereas membrane-bound PF-4 and plasma PF-4 may interchange.


1978 ◽  
Vol 6 (5) ◽  
pp. 1020-1022 ◽  
Author(s):  
ROBIN F. IRVINE ◽  
REX M. C. DAWSON

1962 ◽  
Vol 237 (3) ◽  
pp. 803-806
Author(s):  
Gordon Guroff ◽  
Sidney Udenfriend

Sign in / Sign up

Export Citation Format

Share Document