scholarly journals Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication.

1995 ◽  
Vol 128 (5) ◽  
pp. 721-736 ◽  
Author(s):  
M A Powers ◽  
C Macaulay ◽  
F R Masiarz ◽  
D J Forbes

Xenopus egg extracts provide a powerful system for in vitro reconstitution of nuclei and analysis of nuclear transport. Such cell-free extracts contain three major N-acetylglucosaminylated proteins: p200, p97, and p60. Both p200 and p60 have been found to be components of the nuclear pore. Here, the role of p97 has been investigated. Xenopus p97 was isolated and antisera were raised and affinity purified. Immunolocalization experiments indicate that p97 is present in a punctate pattern on the nuclear envelope and also in the nuclear interior. Peptide sequence analysis reveals that p97 contains a GLFG motif which defines a family of yeast nuclear pore proteins, as well as a peptide that is identical at 11/15 amino acids to a specific member of the GLFG family, NUP116. An additional peptide is highly homologous to a second sequence found in NUP116 and other members of the yeast GLFG family. A monoclonal antibody to the GLFG domain cross-reacts with a major Xenopus protein of 97 kD and polyclonal antiserum to p97 recognizes the yeast GLFG nucleoporin family. The p97 antiserum was used to immunodeplete Xenopus egg cytosol and p97-deficient nuclei were reconstituted. The p97-depleted nuclei remained largely competent for nuclear protein import. However, in contrast to control nuclei, nuclei deficient in p97 fail to grow in size over time and do not replicate their chromosomal DNA. ssDNA replication in such extracts remains unaffected. Addition of the N-acetylglucosaminylated nuclear proteins of Xenopus or rat reverses these replication and growth defects. The possible role(s) of p97 in these nuclear functions is discussed.

2019 ◽  
Vol 218 (6) ◽  
pp. 2021-2034 ◽  
Author(s):  
Fabian B. Romano ◽  
Neil B. Blok ◽  
Tom A. Rapoport

Peroxisomes import their luminal proteins from the cytosol. Most substrates contain a C-terminal Ser-Lys-Leu (SKL) sequence that is recognized by the receptor Pex5. Pex5 binds to peroxisomes via a docking complex containing Pex14, and recycles back into the cytosol following its mono-ubiquitination at a conserved Cys residue. The mechanism of peroxisome protein import remains incompletely understood. Here, we developed an in vitro import system based on Xenopus egg extracts. Import is dependent on the SKL motif in the substrate and on the presence of Pex5 and Pex14, and is sustained by ATP hydrolysis. A protein lacking an SKL sequence can be coimported, providing strong evidence for import of a folded protein. The conserved cysteine in Pex5 is not essential for import or to clear import sites for subsequent rounds of translocation. This new in vitro assay will be useful for further dissecting the mechanism of peroxisome protein import.


1993 ◽  
Vol 123 (4) ◽  
pp. 785-798 ◽  
Author(s):  
G Schlenstedt ◽  
E Hurt ◽  
V Doye ◽  
P A Silver

We have developed an in vitro nuclear protein import reaction from semi-intact yeast cells. The reaction uses cells that have been permeabilized by freeze-thaw after spheroplast formation. Electron microscopic analysis and antibody-binding experiments show that the nuclear envelope remains intact but the plasma membrane is perforated. In the presence of ATP and cytosol derived from yeast or mammalian cells, a protein containing the nuclear localization sequence (NLS) of SV40 large T-antigen is transported into the nucleus. Proteins with mutant NLSs are not imported. In the absence of cytosol, binding of NLS-containing proteins occurs at the nuclear envelope. N-ethylmaleimide treatment of the cytosol as well as antibodies to the nuclear pore protein Nsp1 inhibit import but not binding to the nuclear envelope. Yeast mutants defective in nuclear protein transport were tested in the in vitro import reaction. Semi-intact cells from temperature-sensitive nsp1 mutants failed to import but some binding to the nuclear envelope was observed. On the other hand, no binding and thus no import into nuclei was observed in semi-intact nsp49 cells which are mutated in another nuclear pore protein. Np13 mutants, which are defective for nuclear protein import in vivo, were also deficient in the binding step under the in vitro conditions. Thus, the transport defect in these mutants is at the level of the nucleus and the point at which nuclear transport is blocked can be defined.


2001 ◽  
Vol 155 (3) ◽  
pp. 339-354 ◽  
Author(s):  
Sanjay Vasu ◽  
Sundeep Shah ◽  
Arturo Orjalo ◽  
Minkyu Park ◽  
Wolfgang H. Fischer ◽  
...  

RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.


1996 ◽  
Vol 7 (9) ◽  
pp. 1319-1334 ◽  
Author(s):  
H Saitoh ◽  
C A Cooke ◽  
W H Burgess ◽  
W C Earnshaw ◽  
M Dasso

Ran is a small GTPase that is required for protein import, mRNA export, and the maintenance of nuclear structures. To gain a better understanding of Ran's role in the nucleus, we have sought to use Xenopus egg extracts for the purification and characterization of proteins from egg extracts bound with a high affinity to a glutathione-S-transferase-Ran fusion protein (GST-Ran). We found that GST-Ran associates specifically with at least 10 extract proteins. We determined the identifies of six Ran-interacting proteins (Rips), and found that they include RanBP2/Nup358, Nup153, Importin beta, hsc70, RCC1, and RanBP1. On the basis of peptide sequence, a seventh Rip (p88) seems to be similar but not identical to Fug1/RanGAP1, the mammalian Ran-GTPase-activating protein. Gel filtration analysis of endogenous extract proteins suggests that Importin beta acts as a primary GTP-Ran effector. Both Ran and Importin beta are coimmunoprecipitated by anti-p340RanBP2 antibodies in the presence of nonhydrolyzable GTP analogues, suggesting that Ran-Importin beta complexes interact with p340RanBP2. Two other Rips, p18 and p88, are coprecipitated with p340RanBP2 in a nucleotide-independent manner. Analysis of the Ran-GTPase pathway in Xenopus extracts allows the examination of interactions between Ran-associated proteins under conditions that resemble in vivo conditions more closely than in assays with purified components, and it thereby allows additional insights into the molecular mechanism of nuclear transport.


1995 ◽  
Vol 6 (2) ◽  
pp. 227-236 ◽  
Author(s):  
J Rosenblatt ◽  
P Peluso ◽  
T J Mitchison

Non-muscle cells contain 15-500 microM actin, a large fraction of which is unpolymerized. Thus, the concentration of unpolymerized actin is well above the critical concentration for polymerization in vitro (0.2 microM). This fraction of actin could be prevented from polymerization by being ADP bound (therefore less favored to polymerize) or by being ATP bound and sequestered by a protein such as thymosin beta 4, or both. We isolated the unpolymerized actin from Xenopus egg extracts using immobilized DNase 1 and assayed the bound nucleotide. High-pressure liquid chromatography analysis showed that the bulk of soluble actin is ATP bound. Analysis of actin-bound nucleotide exchange rates suggested the existence of two pools of unpolymerized actin, one of which exchanges nucleotide relatively rapidly and another that apparently does not exchange. Native gel electrophoresis of Xenopus egg extracts demonstrated that most of the soluble actin exists in complexes with other proteins, one of which might be thymosin beta 4. These results are consistent with actin polymerization being controlled by the sequestration and release of ATP-bound actin, and argue against nucleotide exchange playing a major role in regulating actin polymerization.


1995 ◽  
Vol 108 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
L.J. Wangh ◽  
D. DeGrace ◽  
J.A. Sanchez ◽  
A. Gold ◽  
Y. Yeghiazarians ◽  
...  

Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.


1996 ◽  
Vol 109 (1) ◽  
pp. 239-246 ◽  
Author(s):  
A. Abrieu ◽  
T. Lorca ◽  
J.C. Labbe ◽  
N. Morin ◽  
S. Keyse ◽  
...  

Unfertilized frog eggs arrest at the second meiotic metaphase, due to cytostatic activity of the c-mos proto-oncogene (CSF). MAP kinase has been proposed to mediate CSF activity in suppressing cyclin degradation. Using an in vitro assay to generate CSF activity, and recombinant CL 100 phosphatase to inactivate MAP kinase, we confirm that the c-mos proto-oncogene blocks cyclin degradation through MAP kinase activation. We further show that for MAP kinase to suppress cyclin degradation, it must be activated before cyclin B-cdc2 kinase has effectively promoted cyclin degradation. Thus MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on. Using a constitutively active mutant of Ca2+/calmodulin dependent protein kinase II, which mediates the effects of Ca2+ at fertilization, we further show that the kinase can activate cyclin degradation in the presence of both MPF and the c-mos proto-oncogene without inactivating MAP kinase.


2004 ◽  
Vol 165 (6) ◽  
pp. 801-812 ◽  
Author(s):  
Wenhui Li ◽  
Soo-Mi Kim ◽  
Joon Lee ◽  
William G. Dunphy

Bloom's syndrome (BS), a disorder associated with genomic instability and cancer predisposition, results from defects in the Bloom's helicase (BLM) protein. In BS cells, chromosomal abnormalities such as sister chromatid exchanges occur at highly elevated rates. Using Xenopus egg extracts, we have studied Xenopus BLM (Xblm) during both unperturbed and disrupted DNA replication cycles. Xblm binds to replicating chromatin and becomes highly phosphorylated in the presence of DNA replication blocks. This phosphorylation depends on Xenopus ATR (Xatr) and Xenopus Rad17 (Xrad17), but not Claspin. Xblm and Xenopus topoisomerase IIIα (Xtop3α) interact in a regulated manner and associate with replicating chromatin interdependently. Immunodepletion of Xblm from egg extracts results in accumulation of chromosomal DNA breaks during both normal and perturbed DNA replication cycles. Disruption of the interaction between Xblm and Xtop3α has similar effects. The occurrence of DNA damage in the absence of Xblm, even without any exogenous insult to the DNA, may help to explain the genesis of chromosomal defects in BS cells.


2018 ◽  
Vol 2 (S1) ◽  
pp. 13-13
Author(s):  
John Barrows ◽  
David Long

OBJECTIVES/SPECIFIC AIMS: The objective of this work is to determine the mechanistic consequences of BRCA1 mutants in inter-strand crosslink (ICL) repair. METHODS/STUDY POPULATION: Our lab uses Xenopus egg extracts to study ICL repair. These extracts can be depleted of endogenous BRCA1 by immunoprecipitation. The goal of this work is to rescue endogenous depletion with in vitro translated, wild type BRCA1. Once achieved, we can supplement the depleted extract with BRCA1 mutants to access their function in ICL repair. RESULTS/ANTICIPATED RESULTS: We hypothesize that the BRCT and RING domain mutations will abrogate ICL repair, while mutations in the coiled coil region will not affect repair. DISCUSSION/SIGNIFICANCE OF IMPACT: These findings will have an immense impact on the understanding of BRCA1 domains. Importantly these results will spur personalized therapy of BRCA1 mutants by showing which domains are sensitive to cross-linking agents.


Sign in / Sign up

Export Citation Format

Share Document