scholarly journals Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

1995 ◽  
Vol 129 (5) ◽  
pp. 1411-1419 ◽  
Author(s):  
T Takebayashi ◽  
M Iwamoto ◽  
A Jikko ◽  
T Matsumura ◽  
M Enomoto-Iwamoto ◽  
...  

Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

Endocrinology ◽  
2002 ◽  
Vol 143 (9) ◽  
pp. 3306-3315 ◽  
Author(s):  
P. Giacobini ◽  
C. Giampietro ◽  
M. Fioretto ◽  
R. Maggi ◽  
A. Cariboni ◽  
...  

Abstract The molecular cues regulating the migratory process of LHRH neurons from the olfactory placode into the brain are not well known, but gradients of chemotropic and chemorepellent factors secreted by the targets are likely to play a key role in guidance mechanisms. Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic cytokine inducing cell migration. It is involved in a variety of developmental processes through interaction with its receptor c-Met. Here we show that c-Met-antibody labels LHRH migrating neurons in the olfactory mesenchyme of E12 mouse and analyze the potential chemotropic effect of HGF/SF on two immortalized LHRH cell lines, GT1-7 and GN11, isolated from tumors developed in the hypothalamus and in the olfactory bulb, respectively. By RT-PCR analysis, Western blotting, and immunocytochemistry, we provide evidence for a high level of c-Met expression in GN11, but not in GT1-7, cells. In addition, HGF/SF treatment promotes specific migratory activity of GN11 cells, as demonstrated by collagen gel assay, time-lapse video microscopy, and Boyden’s chamber experiments. Such promotion is inhibited by the neutralizing antibody. The data reported here represent the first direct evidence of a chemotactic effect of HGF/SF on immortalized LHRH neurons.


Odontology ◽  
2021 ◽  
Author(s):  
Yoko Yamaguchi ◽  
Akira Saito ◽  
Masafumi Horie ◽  
Akira Aoki ◽  
Patrick Micke ◽  
...  

AbstractPeriodontitis is a chronic inflammatory disease leading to progressive connective tissue degradation and loss of the tooth-supporting bone. Clinical and experimental studies suggest that hepatocyte growth factor (HGF) is involved in the dysregulated fibroblast–epithelial cell interactions in periodontitis. The aim of this study was to explore effects of HGF to impact fibroblast-induced collagen degradation. A patient-derived experimental cell culture model of periodontitis was applied. Primary human epithelial cells and fibroblasts isolated from periodontitis-affected gingiva were co-cultured in a three-dimensional collagen gel. The effects of HGF neutralizing antibody on collagen gel degradation were tested and transcriptome analyses were performed. HGF neutralizing antibody attenuated collagen degradation and elicited expression changes of genes related to extracellular matrix (ECM) and cell adhesion, indicating that HGF signaling inhibition leads to extensive impact on cell–cell and cell–ECM interactions. Our study highlights a potential role of HGF in periodontitis. Antagonizing HGF signaling by a neutralizing antibody may represent a novel approach for periodontitis treatment.


1995 ◽  
Vol 270 (2) ◽  
pp. 830-836 ◽  
Author(s):  
Antje Plaschke-Schlütter ◽  
Jürgen Behrens ◽  
Ermanno Gherardi ◽  
Walter Birchmeier

1997 ◽  
Vol 185 (12) ◽  
pp. 2121-2131 ◽  
Author(s):  
Robbert van der Voort ◽  
Taher E.I. Taher ◽  
Robert M.J. Keehnen ◽  
Lia Smit ◽  
Martijn Groenink ◽  
...  

T cell–dependent humoral immune responses are initiated by the activation of naive B cells in the T cell areas of the secondary lymphoid tissues. This primary B cell activation leads to migration of germinal center (GC) cell precursors into B cell follicles where they engage follicular dendritic cells (FDC) and T cells, and differentiate into memory B cells or plasma cells. Both B cell migration and interaction with FDC critically depend on integrin-mediated adhesion. To date, the physiological regulators of this adhesion were unkown. In the present report, we have identified the c-met–encoded receptor tyrosine kinase and its ligand, the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF), as a novel paracrine signaling pathway regulating B cell adhesion. We observed that c-Met is predominantly expressed on CD38+CD77+ tonsillar B cells localized in the dark zone of the GC (centroblasts). On tonsil B cells, ligation of CD40 by CD40-ligand, induces a transient strong upregulation of expression of the c-Met tyrosine kinase. Stimulation of c-Met with HGF/SF leads to receptor phosphorylation and, in addition, to enhanced integrin-mediated adhesion of B cells to both VCAM-1 and fibronectin. Importantly, the c-Met ligand HGF/SF is produced at high levels by tonsillar stromal cells thus providing signals for the regulation of adhesion and migration within the lymphoid microenvironment.


2001 ◽  
Vol 159 (2) ◽  
pp. 579-590 ◽  
Author(s):  
Glenn A. Gmyrek ◽  
Marc Walburg ◽  
Craig P. Webb ◽  
Hsiao-Man Yu ◽  
Xueke You ◽  
...  

1994 ◽  
Vol 103 (3) ◽  
pp. 306-309 ◽  
Author(s):  
Toshimasa Jindo ◽  
Ryoji Tsuboi ◽  
Ryusuke Imai ◽  
Kenji Takamori ◽  
Jeffrey S Rubin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document