scholarly journals FGF-1-dependent proliferative and migratory responses are impaired in senescent human umbilical vein endothelial cells and correlate with the inability to signal tyrosine phosphorylation of fibroblast growth factor receptor-1 substrates.

1996 ◽  
Vol 134 (3) ◽  
pp. 783-791 ◽  
Author(s):  
S Garfinkel ◽  
X Hu ◽  
I A Prudovsky ◽  
G A McMahon ◽  
E M Kapnik ◽  
...  

Senescent cells do not proliferate in response to exogenous growth factors, yet the number and affinity of growth factor receptors on the cell surface appear to be similar to presenescent cell populations. To determine whether a defect in receptor signaling exists, we analyzed human umbilical vein endothelial cells (HUVEC) since HUVEC growth is absolutely dependent upon the presence of FGF. We report that in both presenescent and senescent HUVEC populations, FGF-1 induces the expression of cell cycle-specific genes, suggesting that functional FGF receptor (FGFR) may exist on the surface of these cells. However, the tyrosine phosphorylation of FGFR-1 substrates, Src and cortactin, is impaired in senescent HUVEC, and only the presenescent cell populations exhibit a FGF-1-dependent Src tyrosine kinase activity. Moreover, we demonstrate that senescent HUVEC are unable to migrate in response to FGF-1, and these data correlate with an altered organization of focal adhesion sites. These data suggest that the induction of gene expression is insufficient to promote a proliferative or migratory phenotype in senescent HUVEC and that the attenuation of the FGFR-1 signal transduction pathway may be involved in the inability of senescent HUVEC to proliferate and/or migrate.

2019 ◽  
Vol 316 (5) ◽  
pp. H1178-H1191 ◽  
Author(s):  
Ling Yang ◽  
Yujie Zhang ◽  
Yadong Ma ◽  
Jun Du ◽  
Luo Gu ◽  
...  

Melatonin is a natural hormone involved in the regulation of circadian rhythm, immunity, and cardiovascular function. In the present study, we focused on the mechanism of melatonin in the regulation of vascular permeability. We found that melatonin could inhibit both VEGF- and EGF-induced monolayer permeability of human umbilical vein endothelial cells (HUVECs) and change the tyrosine phosphorylation of vascular-endothelial (VE-)cadherin, which was related to endothelial barrier function. In addition, phospho-AKT (Ser473) and phospho-ERK(1/2) played significant roles in the regulation of VE-cadherin phosphorylation. Both the phosphatidylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor U0126 could inhibit the permeability of HUVECs, but with different effects on tyrosine phosphorylation of VE-cadherin. Melatonin can influence the two growth factor-induced phosphorylation of AKT (Ser473) but not ERK(1/2). Our results show that melatonin can inhibit growth factor-induced monolayer permeability of HUVECs by influencing the phosphorylation of AKT and VE-cadherin. Melatonin can be a potential treatment for diseases associated with abnormal vascular permeability. NEW & NOTEWORTHY We found that melatonin could inhibit both EGF- and VEGF-induced monolayer permeability of human umbilical vein endothelial cells, which is related to phosphorylation of vascular-endothelial cadherin. Blockade of phosphatidylinositol 3-kinase/AKT and MEK/ERK pathways could inhibit the permeability of human umbilical vein endothelial cells, and phosphorylation of AKT (Ser473) might be a critical event in the changing of monolayer permeability and likely has cross-talk with the MEK/ERK pathway.


Blood ◽  
2005 ◽  
Vol 106 (10) ◽  
pp. 3423-3431 ◽  
Author(s):  
Ahmad Salameh ◽  
Federico Galvagni ◽  
Monia Bardelli ◽  
Federico Bussolino ◽  
Salvatore Oliviero

AbstractVascular endothelial growth factor receptor-3 (VEGFR-3) plays a key role for the remodeling of the primary capillary plexus in the embryo and contributes to angiogenesis and lymphangiogenesis in the adult. However, VEGFR-3 signal transduction pathways remain to be elucidated. Here we investigated VEGFR-3 signaling in primary human umbilical vein endothelial cells (HUVECs) by the systematic mutation of the tyrosine residues potentially involved in VEGFR-3 signaling and identified the tyrosines critical for its function. Y1068 was shown to be essential for the kinase activity of the receptor. Y1063 signals the receptor-mediated survival by recruiting CRKI/II to the activated receptor, inducing a signaling cascade that, via mitogen-activated protein kinase kinase-4 (MKK4), activates c-Jun N-terminal kinase-1/2 (JNK1/2). Inhibition of JNK1/2 function either by specific peptide inhibitor JNKI1 or by RNA interference (RNAi) demonstrated that activation of JNK1/2 is required for a VEGFR-3–dependent prosurvival signaling. Y1230/Y1231 contributes, together with Y1337, to proliferation, migration, and survival of endothelial cells. Phospho-Y1230/Y1231 directly recruits growth factor receptor–bonus protein (GRB2) to the receptor, inducing the activation of both AKT and extracellular signal–related kinase 1/2 (ERK1/2) signaling. Finally, we observed that Y1063 and Y1230/Y1231 signaling converge to induce c-JUN expression, and RNAi experiments demonstrated that c-JUN is required for growth factor–induced prosurvival signaling in primary endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document