scholarly journals Nuclear Import of the TATA-binding Protein: Mediation by the Karyopherin Kap114p and a Possible Mechanism for Intranuclear Targeting

1999 ◽  
Vol 145 (7) ◽  
pp. 1407-1417 ◽  
Author(s):  
Lucy F. Pemberton ◽  
Jonathan S. Rosenblum ◽  
Günter Blobel

Binding of the TATA-binding protein (TBP) to the promoter is the first and rate limiting step in the formation of transcriptional complexes. We show here that nuclear import of TBP is mediated by a new karyopherin (Kap) (importin) family member, Kap114p. Kap114p is localized to the cytoplasm and nucleus. A complex of Kap114p and TBP was detected in the cytosol and could be reconstituted using recombinant proteins, suggesting that the interaction was direct. Deletion of the KAP114 gene led to specific mislocalization of TBP to the cytoplasm. We also describe two other potential minor import pathways for TBP. Consistent with other Kaps, the dissociation of TBP from Kap114p is dependent on RanGTP. However, we could show that double stranded, TATA-containing DNA stimulates this RanGTP-mediated dissociation of TBP, and is necessary at lower RanGTP concentrations. This suggests a mechanism where, once in the nucleus, TBP is preferentially released from Kap114p at the promoter of genes to be transcribed. In this fashion Kap114p may play a role in the intranuclear targeting of TBP.

1997 ◽  
Vol 17 (12) ◽  
pp. 6898-6905 ◽  
Author(s):  
H Xiao ◽  
J T Lis ◽  
K T Jeang

Artificial recruitment of TATA-binding protein (TBP) to many eukaryotic promoters bypasses DNA-bound activator function. The human immunodeficiency virus type 1 (HIV-1) Tat is an unconventional activator that up-regulates transcription from the HIV-1 long terminal repeat (LTR) through binding to a nascent RNA sequence, TAR. Because this LTR and its cognate activator have atypical features compared to a standard RNA polymerase II (RNAP II) transcriptional unit, the precise limiting steps for HIV-1 transcription and how Tat resolves these limitations remain incompletely understood. We thus constructed human TBP fused to the DNA-binding domain of GAL4 to determine whether recruitment of TBP is one rate-limiting step in HIV-1 LTR transcription and whether Tat functions to recruit TBP. As a control, we compared the activity of the adenovirus E1b promoter. Our findings indicate that TBP tethering to the E1b promoter fully effected transcription to the same degree achievable with the potent GAL4-VP16 activator. By contrast, TBP recruitment to the HIV-1 LTR, although necessary for conferring Tat responsiveness, did not bypass a physical need for Tat in achieving activated transcription. These results document that the HIV-1 and the E1b promoters are transcriptionally limited at different steps; the major rate-limiting step for E1b is recruitment of TBP, while activation of the HIV-1 LTR requires steps in addition to TBP recruitment. We suggest that Tat acts to accelerate rate-limiting steps after TBP recruitment.


1997 ◽  
Vol 17 (5) ◽  
pp. 2888-2896 ◽  
Author(s):  
W S Blair ◽  
B R Cullen

We describe a unique gain-of-function mutant of the TATA-binding protein (TBP) subunit of Saccharomyces cerevisiae TFIID that, at least in part, renders transcriptional transactivators dispensable for efficient mRNA expression. The yTBPN69S mutant enhances transcription from weaker yeast promoter elements by up to 50-fold yet does not significantly increase gene expression directed by highly active promoters. Therefore, this TBP mutant and transcriptional transactivators appear to affect a common rate-limiting step in transcription initiation. Consistent with the hypothesis that this step is TFIID recruitment, tethering of TBP to a target promoter via a heterologous DNA binding domain, which is known to bypass the need for transcriptional transactivators, also nullifies the enhancing effect exerted by the N69S mutation. These data provide genetic support for the hypothesis that TFIID recruitment represents a rate-limiting step in the initiation of mRNA transcription that is specifically enhanced by transcriptional transactivators.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

Sign in / Sign up

Export Citation Format

Share Document