scholarly journals A novel role for dp115 in the organization of tER sites in Drosophila

2003 ◽  
Vol 162 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Vangelis Kondylis ◽  
Catherine Rabouille

Here, we describe that depletion of the Drosophila homologue of p115 (dp115) by RNA interference in Drosophila S2 cells led to important morphological changes in the Golgi stack morphology and the transitional ER (tER) organization. Using conventional and immunoelectron microscopy and confocal immunofluorescence microscopy, we show that Golgi stacks were converted into clusters of vesicles and tubules, and that the tERs (marked by Sec23p) lost their focused organization and were now dispersed throughout the cytoplasm. However, we found that this morphologically altered exocytic pathway was nevertheless largely competent in anterograde protein transport using two different assays. The effects were specific for dp115. Depletion of the Drosophila homologues of GM130 and syntaxin 5 (dSed5p) did not lead to an effect on the tER organization, though the Golgi stacks were greatly vesiculated in the cells depleted of dSed5p. Taken together, these studies suggest that dp115 could be implicated in the architecture of both the Golgi stacks and the tER sites.

2005 ◽  
Vol 16 (9) ◽  
pp. 4061-4072 ◽  
Author(s):  
Vangelis Kondylis ◽  
Kirsten M. Spoorendonk ◽  
Catherine Rabouille

The de novo model for Golgi stack biogenesis predicts that membrane exiting the ER at transitional ER (tER) sites contains and recruits all the necessary molecules to form a Golgi stack, including the Golgi matrix proteins, p115, GM130, and GRASP65/55. These proteins leave the tER sites faster than Golgi transmembrane resident enzymes, suggesting that they act as a template nucleating the formation of the Golgi apparatus. However, the localization of the Golgi matrix proteins at tER sites is only shown under conditions where exit from the ER is blocked. Here, we show in Drosophila S2 cells, that dGRASP, the single Drosophila homologue of GRASP65/55, localizes both to the Golgi membranes and the tER sites at steady state and that the myristoylation of glycine 2 is essential for the localization to both compartments. Its depletion for 96 h by RNAi gave an effect on the architecture of the Golgi stacks in 30% of the cells, but a double depletion of dGRASP and dGM130 led to the quantitative conversion of Golgi stacks into clusters of vesicles and tubules, often featuring single cisternae. This disruption of Golgi architecture was not accompanied by the disorganization of tER sites or the inhibition of anterograde transport. This shows that, at least in Drosophila, the structural integrity of the Golgi stacks is not required for efficient transport. Overall, dGRASP exhibits a dynamic association to the membrane of the early exocytic pathway and is involved in Golgi stack architecture.


2003 ◽  
Vol 77 (9) ◽  
pp. 5360-5369 ◽  
Author(s):  
Luc Snyers ◽  
Hannes Zwickl ◽  
Dieter Blaas

ABSTRACT Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K+ depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-β-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.


2005 ◽  
Vol 171 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Gohta Goshima ◽  
François Nédélec ◽  
Ronald D. Vale

During the formation of the metaphase spindle in animal somatic cells, kinetochore microtubule bundles (K fibers) are often disconnected from centrosomes, because they are released from centrosomes or directly generated from chromosomes. To create the tightly focused, diamond-shaped appearance of the bipolar spindle, K fibers need to be interconnected with centrosomal microtubules (C-MTs) by minus end–directed motor proteins. Here, we have characterized the roles of two minus end–directed motors, dynein and Ncd, in such processes in Drosophila S2 cells using RNA interference and high resolution microscopy. Even though these two motors have overlapping functions, we show that Ncd is primarily responsible for focusing K fibers, whereas dynein has a dominant function in transporting K fibers to the centrosomes. We also report a novel localization of Ncd to the growing tips of C-MTs, which we show is mediated by the plus end–tracking protein, EB1. Computer modeling of the K fiber focusing process suggests that the plus end localization of Ncd could facilitate the capture and transport of K fibers along C-MTs. From these results and simulations, we propose a model on how two minus end–directed motors cooperate to ensure spindle pole coalescence during mitosis.


2008 ◽  
Vol 86 (6) ◽  
pp. 509-519 ◽  
Author(s):  
Magdalena Sobczak ◽  
Anna Wasik ◽  
Wanda Kłopocka ◽  
Maria Jolanta Rędowicz

Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).


1996 ◽  
Vol 135 (4) ◽  
pp. 913-924 ◽  
Author(s):  
O Ullrich ◽  
S Reinsch ◽  
S Urbé ◽  
M Zerial ◽  
R G Parton

Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11-positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome.


Sign in / Sign up

Export Citation Format

Share Document