scholarly journals The uniformity of phagosome maturation in macrophages

2004 ◽  
Vol 164 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Rebecca M. Henry ◽  
Adam D. Hoppe ◽  
Nikhil Joshi ◽  
Joel A. Swanson

Many studies of endocytosis and phagocytosis presume that organelles containing a single kind of internalized particle exhibit invariant patterns of protein and phospholipid association as they mature inside cells. To test this presumption, fluorescent protein chimeras were expressed in RAW 264.7 macrophages, and time-lapse ratiometric fluorescence microscopy was used to measure the maturation dynamics of individual phagosomes containing IgG-opsonized erythrocytes. Quantitative analysis revealed consistent patterns of association for YFP chimeras of β-actin, Rab5a, Rab7, and LAMP-1, and no association of YFP chimeras marking endoplasmic reticulum or Golgi. YFP-2xFYVE, recognizing phosphatidylinositol 3-phosphate (PI(3)P), showed two patterns of phagosome labeling. Some phagosomes increased labeling quickly after phagosome closure and then lost the label within 20 min, whereas others labeled more slowly and retained the label for several hours. The two patterns of PI(3)P on otherwise identical phagosomes indicated that organelle maturation does not necessarily follow a single path and that some features of phagosome maturation are integrated over the entire organelle.

2015 ◽  
Vol 12 (3) ◽  
pp. 4773-4781 ◽  
Author(s):  
CHANG-SEOB SEO ◽  
HYE-SUN LIM ◽  
HYEKYUNG HA ◽  
SEONG EUN JIN ◽  
HYEUN-KYOO SHIN

2000 ◽  
Vol 11 (3) ◽  
pp. 897-914 ◽  
Author(s):  
Mark Terasaki

The endoplasmic reticulum (ER) and Golgi were labeled by green fluorescent protein chimeras and observed by time-lapse confocal microscopy during the rapid cell cycles of sea urchin embryos. The ER undergoes a cyclical microtubule-dependent accumulation at the mitotic poles and by photobleaching experiments remains continuous through the cell cycle. Finger-like indentations of the nuclear envelope near the mitotic poles appear 2–3 min before the permeability barrier of the nuclear envelope begins to change. This permeability change in turn is ∼30 s before nuclear envelope breakdown. During interphase, there are many scattered, disconnected Golgi stacks throughout the cytoplasm, which appear as 1- to 2-μm fluorescent spots. The number of Golgi spots begins to decline soon after nuclear envelope breakdown, reaches a minimum soon after cytokinesis, and then rapidly increases. At higher magnification, smaller spots are seen, along with increased fluorescence in the ER. Quantitative measurements, along with nocodazole and photobleaching experiments, are consistent with a redistribution of some of the Golgi to the ER during mitosis. The scattered Golgi coalesce into a single large aggregate during the interphase after the ninth embryonic cleavage; this is likely to be preparatory for secretion of the hatching enzyme during the following cleavage cycle.


Microscopy ◽  
2018 ◽  
Vol 67 (2) ◽  
pp. 89-98
Author(s):  
Tetsuichi Wazawa ◽  
Yoshiyuki Arai ◽  
Yoshinobu Kawahara ◽  
Hiroki Takauchi ◽  
Takashi Washio ◽  
...  

Abstract Far-field super-resolution fluorescence microscopy has enabled us to visualize live cells in great detail and with an unprecedented resolution. However, the techniques developed thus far have required high-power illumination (102–106 W/cm2), which leads to considerable phototoxicity to live cells and hampers time-lapse observation of the cells. In this study we show a highly biocompatible super-resolution microscopy technique that requires a very low-power illumination. The present technique combines a fast photoswitchable fluorescent protein, Kohinoor, with SPoD-ExPAN (super-resolution by polarization demodulation/excitation polarization angle narrowing). With this technique, we successfully observed Kohinoor-fusion proteins involving vimentin, paxillin, histone and clathrin expressed in HeLa cells at a spatial resolution of 70–80 nm with illumination power densities as low as ~1 W/cm2 for both excitation and photoswitching. Furthermore, although the previous SPoD-ExPAN technique used L1-regularized maximum-likelihood calculations to reconstruct super-resolved images, we devised an extension to the Lp-regularization to obtain super-resolved images that more accurately describe objects at the specimen plane. Thus, the present technique would significantly extend the applicability of super-resolution fluorescence microscopy for live-cell imaging.


1999 ◽  
Vol 112 (24) ◽  
pp. 4521-4534 ◽  
Author(s):  
R. Windoffer ◽  
R.E. Leube

To monitor the desmosome-anchored cytokeratin network in living cells fusion protein HK13-EGFP consisting of human cytokeratin 13 and the enhanced green fluorescent protein was stably expressed in vulvar carcinoma-derived A-431 cells. It is shown for A-431 subclone AK13-1 that HK13-EGFP emits strong fluorescence in fixed and living cells, being part of an extended cytoplasmic intermediate filament network that is indistinguishable from that of parent A-431 cells. Biochemical, immunological and ultrastructural analyses demonstrate that HK13-EGFP behaves identically to the endogenous cytokeratin 13 and is therefore a reliable in vivo tag for this polypeptide and the structures formed by it. Time-lapse fluorescence microscopy reveals that the cytokeratin 13-containing network is in constant motion, resulting in continuous restructuring occurring in single and migratory cells, as well as in desmosome-anchored cells. Two major types of movement are distinguished: (i) oscillations of mostly long filaments, and (ii) an inward-directed flow of fluorescence originating as diffuse material at the cell periphery and moving in the form of dots and thin filaments toward the deeper cytoplasm where it coalesces with other filaments and filament bundles. Both movements are energy dependent and can be inhibited by nocodazole, but not by cytochalasin D. Finally, disassembly and reformation of cytokeratin filament networks are documented in dividing cells revealing distinct and rapidly occurring stages of cytokeratin organisation and distribution.


2013 ◽  
Vol 79 (18) ◽  
pp. 5643-5651 ◽  
Author(s):  
Robyn T. Eijlander ◽  
Oscar P. Kuipers

ABSTRACTSingle-cell methods are a powerful application in microbial research to study the molecular mechanism underlying phenotypic heterogeneity and cell-to-cell variability. Here, we describe the optimization and application of single-cell time-lapse fluorescence microscopy for the food spoilage bacteriumBacillus cereusspecifically. This technique is useful to study cellular development and adaptation, gene expression, protein localization, protein mobility, and cell-to-cell communication over time at the single-cell level. By adjusting existing protocols, we have enabled the visualization of growth and development of singleB. cereuscells within a microcolony over time. Additionally, several different fluorescent reporter proteins were tested in order to select the most suitable green fluorescent protein (GFP) and red fluorescent protein (RFP) candidates for visualization of growth stage- and cell compartment-specific gene expression inB. cereus. With a case study concerningcotDexpression during sporulation, we demonstrate the applicability of time-lapse fluorescence microscopy. It enables the assessment of gene expression levels, dynamics, and heterogeneity at the single-cell level. We show thatcotDis not heterogeneously expressed among cells of a subpopulation. Furthermore, we discourage using plasmid-based reporter fusions for such studies, due to an introduced heterogeneity through copy number differences. This stresses the importance of using single-copy integrated reporter fusions for single-cell studies.


Sign in / Sign up

Export Citation Format

Share Document