Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells

1999 ◽  
Vol 112 (24) ◽  
pp. 4521-4534 ◽  
Author(s):  
R. Windoffer ◽  
R.E. Leube

To monitor the desmosome-anchored cytokeratin network in living cells fusion protein HK13-EGFP consisting of human cytokeratin 13 and the enhanced green fluorescent protein was stably expressed in vulvar carcinoma-derived A-431 cells. It is shown for A-431 subclone AK13-1 that HK13-EGFP emits strong fluorescence in fixed and living cells, being part of an extended cytoplasmic intermediate filament network that is indistinguishable from that of parent A-431 cells. Biochemical, immunological and ultrastructural analyses demonstrate that HK13-EGFP behaves identically to the endogenous cytokeratin 13 and is therefore a reliable in vivo tag for this polypeptide and the structures formed by it. Time-lapse fluorescence microscopy reveals that the cytokeratin 13-containing network is in constant motion, resulting in continuous restructuring occurring in single and migratory cells, as well as in desmosome-anchored cells. Two major types of movement are distinguished: (i) oscillations of mostly long filaments, and (ii) an inward-directed flow of fluorescence originating as diffuse material at the cell periphery and moving in the form of dots and thin filaments toward the deeper cytoplasm where it coalesces with other filaments and filament bundles. Both movements are energy dependent and can be inhibited by nocodazole, but not by cytochalasin D. Finally, disassembly and reformation of cytokeratin filament networks are documented in dividing cells revealing distinct and rapidly occurring stages of cytokeratin organisation and distribution.

1998 ◽  
Vol 143 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Miri Yoon ◽  
Robert D. Moir ◽  
Veena Prahlad ◽  
Robert D. Goldman

The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.


2003 ◽  
Vol 14 (1) ◽  
pp. 142-155 ◽  
Author(s):  
Satoshi Waguri ◽  
Frédérique Dewitte ◽  
Roland Le Borgne ◽  
Yves Rouillé ◽  
Yasuo Uchiyama ◽  
...  

We have stably expressed in HeLa cells a chimeric protein made of the green fluorescent protein (GFP) fused to the transmembrane and cytoplasmic domains of the mannose 6-phosphate/insulin like growth factor II receptor in order to study its dynamics in living cells. At steady state, the bulk of this chimeric protein (GFP-CI-MPR) localizes to the trans-Golgi network (TGN), but significant amounts are also detected in peripheral, tubulo-vesicular structures and early endosomes as well as at the plasma membrane. Time-lapse videomicroscopy shows that the GFP-CI-MPR is ubiquitously detected in tubular elements that detach from the TGN and move toward the cell periphery, sometimes breaking into smaller tubular fragments. The formation of the TGN-derived tubules is temperature dependent, requires the presence of intact microtubule and actin networks, and is regulated by the ARF-1 GTPase. The TGN-derived tubules fuse with peripheral, tubulo-vesicular structures also containing the GFP-CI-MPR. These structures are highly dynamic, fusing with each other as well as with early endosomes. Time-lapse videomicroscopy performed on HeLa cells coexpressing the CFP-CI-MPR and the AP-1 complex whose γ-subunit was fused to YFP shows that AP-1 is present not only on the TGN and peripheral CFP-CI-MPR containing structures but also on TGN-derived tubules containing the CFP-CI-MPR. The data support the notion that tubular elements can mediate MPR transport from the TGN to a peripheral, tubulo-vesicular network dynamically connected with the endocytic pathway and that the AP-1 coat may facilitate MPR sorting in the TGN and endosomes.


Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Enid Yi Ni Lam ◽  
Christopher J. Hall ◽  
Philip S. Crosier ◽  
Kathryn E. Crosier ◽  
Maria Vega Flores

Abstract Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism.


2004 ◽  
Vol 15 (10) ◽  
pp. 4622-4632 ◽  
Author(s):  
Yasmina Bauer ◽  
Philipp Knechtle ◽  
Jürgen Wendland ◽  
Hanspeter Helfer ◽  
Peter Philippsen

Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Δ deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 719-726 ◽  
Author(s):  
Nicole Faust ◽  
Florencio Varas ◽  
Louise M. Kelly ◽  
Susanne Heck ◽  
Thomas Graf

Abstract Pluripotent hematopoietic stem cells have been studied extensively, but the events that occur during their differentiation remain largely uncharted. To develop a system that allows the differentiation of cultured multipotent progenitors by time-lapse fluorescence microscopy, myelomonocytic cells were labeled with green fluorescent protein (GFP) in vivo. This was achieved by knocking the enhanced GFP (EGFP) gene into the murine lysozyme M (lys) locus and using a targeting vector, which contains a neomycin resistant (neo) gene flanked by LoxP sites and “splinked” ends, to increase the frequency of homologous recombination. Analysis of the blood and bone marrow of thelys-EGFP mice revealed that most myelomonocytic cells, especially mature neutrophil granulocytes, were fluorescence-positive, while cells from other lineages were not. Removal of the neogene through breeding of the mice with the Cre-deleter strain led to an increased fluorescence intensity. Mice with an inactivation of both copies of the lys gene developed normally and were fertile.


1999 ◽  
Vol 73 (5) ◽  
pp. 4110-4119 ◽  
Author(s):  
Gillian Elliott ◽  
Peter O’Hare

ABSTRACT Many stages of the herpes simplex virus maturation pathway have not yet been defined. In particular, little is known about the assembly of the virion tegument compartment and its subsequent incorporation into maturing virus particles. Here we describe the construction of a herpes simplex virus type 1 (HSV-1) recombinant in which we have replaced the gene encoding a major tegument protein, VP22, with a gene expressing a green fluorescent protein (GFP)-VP22 fusion protein (GFP-22). We show that this virus has growth properties identical to those of the parental virus and that newly synthesized GFP-22 is detectable in live cells as early as 3 h postinfection. Moreover, we show that GFP-22 is incorporated into the HSV-1 virion as efficiently as VP22, resulting in particles which are visible by fluorescence microscopy. Consequently, we have used time lapse confocal microscopy to monitor GFP-22 in live-cell infection, and we present time lapse animations of GFP-22 localization throughout the virus life cycle. These animations demonstrate that GFP-22 is present in a diffuse cytoplasmic location when it is initially expressed but evolves into particulate material which travels through an exclusively cytoplasmic pathway to the cell periphery. In this way, we have for the first time visualized the trafficking of a herpesvirus structural component within live, infected cells.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 719-726 ◽  
Author(s):  
Nicole Faust ◽  
Florencio Varas ◽  
Louise M. Kelly ◽  
Susanne Heck ◽  
Thomas Graf

Pluripotent hematopoietic stem cells have been studied extensively, but the events that occur during their differentiation remain largely uncharted. To develop a system that allows the differentiation of cultured multipotent progenitors by time-lapse fluorescence microscopy, myelomonocytic cells were labeled with green fluorescent protein (GFP) in vivo. This was achieved by knocking the enhanced GFP (EGFP) gene into the murine lysozyme M (lys) locus and using a targeting vector, which contains a neomycin resistant (neo) gene flanked by LoxP sites and “splinked” ends, to increase the frequency of homologous recombination. Analysis of the blood and bone marrow of thelys-EGFP mice revealed that most myelomonocytic cells, especially mature neutrophil granulocytes, were fluorescence-positive, while cells from other lineages were not. Removal of the neogene through breeding of the mice with the Cre-deleter strain led to an increased fluorescence intensity. Mice with an inactivation of both copies of the lys gene developed normally and were fertile.


1998 ◽  
Vol 111 (12) ◽  
pp. 1649-1658 ◽  
Author(s):  
C. Ballestrem ◽  
B. Wehrle-Haller ◽  
B.A. Imhof

The actin cytoskeleton maintains the cellular architecture and mediates cell movements. To explore actin cytoskeletal dynamics, the enhanced green fluorescent protein (EGFP) was fused to human β-actin. The fusion protein was incorporated into actin fibers which became depolymerized upon cytochalasin B treatment. This functional EGFP-actin construct enabled observation of the actin cytoskeleton in living cells by time lapse fluorescence microscopy. Stable expression of the construct was obtained in mammalian cell lines of different tissue origins. In stationary cells, actin rich, ring-like structured ‘actin clouds’ were observed in addition to stress fibers. These ruffle-like structures were found to be involved in the reorganization of the actin cytoskeleton. In migratory cells, EGFP-actin was found in the advancing lamellipodium. Immobile actin spots developed in the lamellipodium and thin actin fibers formed parallel to the leading edge. Thus EGFP-actin expressed in living cells unveiled structures involved in the dynamics of the actin cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document