scholarly journals Neurotransmitter release regulated by a MALS–liprin-α presynaptic complex

2005 ◽  
Vol 170 (7) ◽  
pp. 1127-1134 ◽  
Author(s):  
Olav Olsen ◽  
Kimberly A. Moore ◽  
Masaki Fukata ◽  
Toshinari Kazuta ◽  
Jonathan C. Trinidad ◽  
...  

Synapses are highly specialized intercellular junctions organized by adhesive and scaffolding molecules that align presynaptic vesicular release with postsynaptic neurotransmitter receptors. The MALS/Veli–CASK–Mint-1 complex of PDZ proteins occurs on both sides of the synapse and has the potential to link transsynaptic adhesion molecules to the cytoskeleton. In this study, we purified the MALS protein complex from brain and found liprin-α as a major component. Liprin proteins organize the presynaptic active zone and regulate neurotransmitter release. Fittingly, mutant mice lacking all three MALS isoforms died perinatally with difficulty breathing and impaired excitatory synaptic transmission. Excitatory postsynaptic currents were dramatically reduced in autaptic cultures from MALS triple knockout mice due to a presynaptic deficit in vesicle cycling. These findings are consistent with a model whereby the MALS–CASK–liprin-α complex recruits components of the synaptic release machinery to adhesive proteins of the active zone.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Marisa M Brockmann ◽  
Marta Maglione ◽  
Claudia G Willmes ◽  
Alexander Stumpf ◽  
Boris A Bouazza ◽  
...  

All synapses require fusion-competent vesicles and coordinated Ca2+-secretion coupling for neurotransmission, yet functional and anatomical properties are diverse across different synapse types. We show that the presynaptic protein RIM-BP2 has diversified functions in neurotransmitter release at different central murine synapses and thus contributes to synaptic diversity. At hippocampal pyramidal CA3-CA1 synapses, RIM-BP2 loss has a mild effect on neurotransmitter release, by only regulating Ca2+-secretion coupling. However, at hippocampal mossy fiber synapses, RIM-BP2 has a substantial impact on neurotransmitter release by promoting vesicle docking/priming and vesicular release probability via stabilization of Munc13-1 at the active zone. We suggest that differences in the active zone organization may dictate the role a protein plays in synaptic transmission and that differences in active zone architecture is a major determinant factor in the functional diversity of synapses.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Hajnalka Nyitrai ◽  
...  

AbstractThe active zone of a presynaptic nerve terminal defines sites for neurotransmitter release. Its protein machinery may be organized through liquid–liquid phase separation, a mechanism for the formation of membrane-less subcellular compartments. Here, we show that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation in transfected HEK293T cells. Condensate formation is triggered by Liprin-α3 PKC-phosphorylation at serine-760, and RIM and Munc13 are co-recruited into membrane-attached condensates. Phospho-specific antibodies establish phosphorylation of Liprin-α3 serine-760 in transfected cells and mouse brain tissue. In primary hippocampal neurons of newly generated Liprin-α2/α3 double knockout mice, synaptic levels of RIM and Munc13 are reduced and the pool of releasable vesicles is decreased. Re-expression of Liprin-α3 restored these presynaptic defects, while mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented this rescue. Finally, PKC activation in these neurons acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. Our findings indicate that PKC-mediated phosphorylation of Liprin-α3 triggers its phase separation and modulates active zone structure and function.


2020 ◽  
Author(s):  
Javier Emperador-Melero ◽  
Man Yan Wong ◽  
Shan Shan H. Wang ◽  
Giovanni de Nola ◽  
Tom Kirchhausen ◽  
...  

AbstractLiquid-liquid phase separation enables the assembly of membrane-less subcellular compartments, but testing its biological functions has been difficult. The presynaptic active zone, protein machinery in nerve terminals that defines sites for neurotransmitter release, may be organized through phase separation. Here, we discover that the active zone protein Liprin-α3 rapidly and reversibly undergoes phase separation upon phosphorylation by PKC at a single site. RIM and Munc13 are co-recruited to membrane-attached condensates, and phospho-specific antibodies establish Liprin-α3 phosphorylation in vivo. At synapses of newly generated Liprin-α2/α3 double knockout mice, RIM, Munc13 and the pool of releasable vesicles were reduced. Re-expression of Liprin-α3 restored these defects, but mutating the Liprin-α3 phosphorylation site to abolish phase condensation prevented rescue. Finally, PKC activation acutely increased RIM, Munc13 and neurotransmitter release, which depended on the presence of phosphorylatable Liprin-α3. We conclude that Liprin-α3 phosphorylation rapidly triggers presynaptic phase separation to modulate active zone structure and function.


2020 ◽  
Author(s):  
Eric D. Young ◽  
Jingjing Sherry Wu ◽  
Mamiko Niwa ◽  
Elisabeth Glowatzki

AbstractThe synapse between inner hair cells and auditory nerve fiber dendrites shows large EPSCs, which are either monophasic or multiphasic. Multiquantal or uniquantal flickering release have been proposed to underlie the unusual multiphasic waveforms. Here the nature of multiphasic waveforms is analyzed using EPSCs recorded in vitro in rat afferent dendrites. Spontaneous EPSCs were deconvolved into a sum of presumed release events with monophasic EPSC waveforms. Results include: first, the charge of EPSCs is about the same for multiphasic versus monophasic EPSCs. Second, EPSC amplitudes decline with the number of release events per EPSC. Third, there is no evidence of a mini-EPSC. Most results can be accounted for by versions of either uniquantal or multiquantal release. However, serial neurotransmitter release in multiphasic EPSCs shows properties that are not fully explained by either model, especially that the amplitudes of individual release events is established at the beginning of a multiphasic EPSC, constraining possible models of vesicle release.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quentin Bourgeois-Jaarsma ◽  
Matthijs Verhage ◽  
Alexander J. Groffen

Abstract Communication between neurons involves presynaptic neurotransmitter release which can be evoked by action potentials or occur spontaneously as a result of stochastic vesicle fusion. The Ca2+-binding double C2 proteins Doc2a and –b were implicated in spontaneous and asynchronous evoked release, but the mechanism remains unclear. Here, we compared wildtype Doc2b with two Ca2+ binding site mutants named DN and 6A, previously classified as gain- and loss-of-function mutants. They carry the substitutions D218,220N or D163,218,220,303,357,359A respectively. We found that both mutants bound phospholipids at low Ca2+ concentrations and were membrane-associated in resting neurons, thus mimicking a Ca2+-activated state. Their overexpression in hippocampal primary cultured neurons had similar effects on spontaneous and evoked release, inducing high mEPSC frequencies and increased short-term depression. Together, these data suggest that the DN and 6A mutants both act as gain-of-function mutants at resting conditions.


2006 ◽  
Vol 34 (5) ◽  
pp. 939-941 ◽  
Author(s):  
R.J. Kittel ◽  
S. Hallermann ◽  
S. Thomsen ◽  
C. Wichmann ◽  
S.J. Sigrist ◽  
...  

Neurotransmitter release at chemical synapses occurs when synaptic vesicles fuse to the presynaptic membrane at a specialized site termed the active zone. The depolarization-induced fusion is highly dependent on calcium ions, and, correspondingly, the transmission characteristics of synapses are thought to be influenced by the spatial arrangement of voltage-gated calcium channels with respect to vesicle release sites. Here, we review the involvement of the Drosophila Bruchpilot (BRP) protein in active zone assembly, a process that is required for the clustering of presynaptic calcium channels to ensure efficient vesicle release.


Author(s):  
Peggy Mason

The biochemical and physiological processes of neurotransmitter release from an active zone, a specialized region of synaptic membrane, are examined. Synaptic vesicles containing neurotransmitters are docked at the active zone and then primed for release by SNARE complexes that bring them into extreme proximity to the plasma membrane. Entry of calcium ions through voltage-gated calcium channels triggers synaptic vesicle fusion with the synaptic terminal membrane and the consequent diffusion of neurotransmitter into the synaptic cleft. Release results when the fusion pore bridging the synaptic vesicle and plasma membrane widens and neurotransmitter from the inside of the synaptic vesicle diffuses into the synaptic cleft. Membrane from the active zone membrane is endocytosed, and synaptic vesicle proteins are then reassembled into recycled synaptic vesicles, allowing for more rounds of neurotransmitter release.


2012 ◽  
Vol 32 (48) ◽  
pp. 17048-17058 ◽  
Author(s):  
J. J. Bruckner ◽  
S. J. Gratz ◽  
J. K. Slind ◽  
R. R. Geske ◽  
A. M. Cummings ◽  
...  

2016 ◽  
Vol 216 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Joseph J. Bruckner ◽  
Hong Zhan ◽  
Scott J. Gratz ◽  
Monica Rao ◽  
Fiona Ukken ◽  
...  

The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release.


Sign in / Sign up

Export Citation Format

Share Document