scholarly journals The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis

2006 ◽  
Vol 172 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Bernhard Goetze ◽  
Fabian Tuebing ◽  
Yunli Xie ◽  
Mario M. Dorostkar ◽  
Sabine Thomas ◽  
...  

Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of β-actin mRNA and fewer dendritic β-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons.

2004 ◽  
Vol 279 (30) ◽  
pp. 31440-31444 ◽  
Author(s):  
Paolo Macchi ◽  
Amy M. Brownawell ◽  
Barbara Grunewald ◽  
Luc DesGroseillers ◽  
Ian G. Macara ◽  
...  

2013 ◽  
Vol 87 (24) ◽  
pp. 13409-13421 ◽  
Author(s):  
J. E. Petrillo ◽  
P. A. Venter ◽  
J. R. Short ◽  
R. Gopal ◽  
S. Deddouche ◽  
...  

eNeuro ◽  
2017 ◽  
Vol 4 (6) ◽  
pp. ENEURO.0268-17.2017 ◽  
Author(s):  
Graciano Leal ◽  
Diogo Comprido ◽  
Pasqualino de Luca ◽  
Eduardo Morais ◽  
Luís Rodrigues ◽  
...  

Virology ◽  
1993 ◽  
Vol 195 (2) ◽  
pp. 732-744 ◽  
Author(s):  
Hao Yuwen ◽  
Josephine H. Cox ◽  
Jonathan W. Yewdell ◽  
Jack R. Bennink ◽  
Bernard Moss

2007 ◽  
Vol 16 (22) ◽  
pp. 2760-2769 ◽  
Author(s):  
J. P. Chapple ◽  
K. Anthony ◽  
T. R. Martin ◽  
A. Dev ◽  
T. A. Cooper ◽  
...  

2005 ◽  
Vol 168 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Emily Osterweil ◽  
David G. Wells ◽  
Mark S. Mooseker

Myosin VI (Myo6) is an actin-based motor protein implicated in clathrin-mediated endocytosis in nonneuronal cells, though little is known about its function in the nervous system. Here, we find that Myo6 is highly expressed throughout the brain, localized to synapses, and enriched at the postsynaptic density. Myo6-deficient (Snell's waltzer; sv/sv) hippocampus exhibits a decrease in synapse number, abnormally short dendritic spines, and profound astrogliosis. Similarly, cultured sv/sv hippocampal neurons display decreased numbers of synapses and dendritic spines, and dominant-negative disruption of Myo6 in wild-type hippocampal neurons induces synapse loss. Importantly, we find that sv/sv hippocampal neurons display a significant deficit in the stimulation-induced internalization of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid–type glutamate receptors (AMPARs), and that Myo6 exists in a complex with the AMPAR, AP-2, and SAP97 in brain. These results suggest that Myo6 plays a role in the clathrin-mediated endocytosis of AMPARs, and that its loss leads to alterations in synaptic structure and astrogliosis.


Sign in / Sign up

Export Citation Format

Share Document