scholarly journals Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage

2007 ◽  
Vol 177 (6) ◽  
pp. 969-979 ◽  
Author(s):  
Amila Suraweera ◽  
Olivier J. Becherel ◽  
Philip Chen ◽  
Natalie Rundle ◽  
Rick Woods ◽  
...  

Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome.

2017 ◽  
Vol 372 (1731) ◽  
pp. 20160283 ◽  
Author(s):  
N. Daniel Berger ◽  
Fintan K. T. Stanley ◽  
Shaun Moore ◽  
Aaron A. Goodarzi

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


2020 ◽  
Author(s):  
Vishruth Nagam

Abstract While in space, astronauts have been known to face exposure to stressors that may increase susceptibility to DNA damage. If DNA repair proteins are defective or nonexistent, DNA mutations may accumulate, causing increasingly abnormal function as one ages [1]. The DNA single-strand break repair protein XRCC1 is important for cerebellar neurogenesis and interneuron development [2]. According to previous studies, a deficiency of XRCC1 can lead to an increase in DNA damage, in mature neurons, and ataxia (a progressive loss of motor coordination) [2]. I propose to address how XRCC1’s efficiency can change in microgravity conditions. This experiment’s relevance is underscored by the importance of motor coordination and physical fitness for astronauts; determining the potential effects of microgravity on XRCC1 is crucial for future space exploration.


2020 ◽  
Vol 48 (12) ◽  
pp. 6672-6684 ◽  
Author(s):  
Ilona Kalasova ◽  
Richard Hailstone ◽  
Janin Bublitz ◽  
Jovel Bogantes ◽  
Winfried Hofmann ◽  
...  

Abstract Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity.


2016 ◽  
Vol 114 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Bret D. Wallace ◽  
Zachary Berman ◽  
Geoffrey A. Mueller ◽  
Yunfeng Lin ◽  
Timothy Chang ◽  
...  

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3′-5′ nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3′-5′ exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


2008 ◽  
Vol 29 (5) ◽  
pp. 1354-1362 ◽  
Author(s):  
John J. Reynolds ◽  
Sherif F. El-Khamisy ◽  
Sachin Katyal ◽  
Paula Clements ◽  
Peter J. McKinnon ◽  
...  

ABSTRACT Ataxia oculomotor apraxia 1 (AOA1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′ termini. Despite this, global rates of chromosomal strand break repair are normal in a variety of AOA1 and other aprataxin-defective cells. Here we show that short-patch single-strand break repair (SSBR) in AOA1 cell extracts bypasses the point of aprataxin action at oxidative breaks and stalls at the final step of DNA ligation, resulting in the accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of nonadenylated DNA ligase, and short-patch SSBR can be restored in AOA1 extracts, independently of aprataxin, by the addition of recombinant DNA ligase. Since adenylated nicks are substrates for long-patch SSBR, we reasoned that this pathway might in part explain the apparent absence of a chromosomal SSBR defect in aprataxin-defective cells. Indeed, whereas chemical inhibition of long-patch repair did not affect SSBR rates in wild-type mouse neural astrocytes, it uncovered a significant defect in Aptx − / − neural astrocytes. These data demonstrate that aprataxin participates in chromosomal SSBR in vivo and suggest that short-patch SSBR arrests in AOA1 because of insufficient nonadenylated DNA ligase.


2014 ◽  
Vol 21 (9) ◽  
pp. 1627-1631 ◽  
Author(s):  
Ricardo H. Roda ◽  
Carlo Rinaldi ◽  
Rajat Singh ◽  
Alice B. Schindler ◽  
Craig Blackstone

2009 ◽  
Vol 37 (3) ◽  
pp. 577-581 ◽  
Author(s):  
John J. Reynolds ◽  
Sherif F. El-Khamisy ◽  
Keith W. Caldecott

AOA1 (ataxia oculomotor apraxia-1) results from mutations in aprataxin, a component of DNA strand break repair that removes AMP from 5′-termini. In the present article, we provide an overview of this disease and review recent experiments demonstrating that short-patch repair of oxidative single-strand breaks in AOA1 cell extracts bypasses the point of aprataxin action and stalls at the final step of DNA ligation, resulting in accumulation of adenylated DNA nicks. Strikingly, this defect results from insufficient levels of non-adenylated DNA ligase and short-patch single-strand break repair can be restored in AOA1 extracts, independently of aprataxin, by addition of recombinant DNA ligase.


2021 ◽  
Vol 1 (2) ◽  
pp. 225-238
Author(s):  
Mohsen Hooshyar ◽  
Daniel Burnside ◽  
Maryam Hajikarimlou ◽  
Katayoun Omidi ◽  
Alexander Jesso ◽  
...  

DNA double-strand breaks (DSBs) are the most deleterious form of DNA damage and are repaired through non-homologous end-joining (NHEJ) or homologous recombination (HR). Repair initiation, regulation and communication with signaling pathways require several histone-modifying and chromatin-remodeling complexes. In budding yeast, this involves three primary complexes: INO80-C, which is primarily associated with HR, SWR1-C, which promotes NHEJ, and RSC-C, which is involved in both pathways as well as the general DNA damage response. Here we identify ARP6 as a factor involved in DSB repair through an RSC-C-related pathway. The loss of ARP6 significantly reduces the NHEJ repair efficiency of linearized plasmids with cohesive ends, impairs the repair of chromosomal breaks, and sensitizes cells to DNA-damaging agents. Genetic interaction analysis indicates that ARP6, MRE11 and RSC-C function within the same pathway, and the overexpression of ARP6 rescues rsc2∆ and mre11∆ sensitivity to DNA-damaging agents. Double mutants of ARP6, and members of the INO80 and SWR1 complexes, cause a significant reduction in repair efficiency, suggesting that ARP6 functions independently of SWR1-C and INO80-C. These findings support a novel role for ARP6 in DSB repair that is independent of the SWR1 chromatin remodeling complex, through an apparent RSC-C and MRE11-associated DNA repair pathway.


Sign in / Sign up

Export Citation Format

Share Document