scholarly journals Centromeric chromatin gets loaded

2007 ◽  
Vol 176 (6) ◽  
pp. 735-736 ◽  
Author(s):  
Christopher W. Carroll ◽  
Aaron F. Straight

Centromeric nucleosomes contain a histone H3 variant called centromere protein A (CENP-A) that is required for kinetochore assembly and chromosome segregation. Two new studies, Jansen et al. (see p. 795 of this issue) and Maddox et al. (see p. 757 of this issue), address when CENP-A is deposited at centromeres during the cell division cycle and identify an evolutionally conserved protein required for CENP-A deposition. Together, these studies advance our understanding of centromeric chromatin assembly and provide a framework for investigating the molecular mechanisms that underlie the centromere-specific loading of CENP-A.

2011 ◽  
Vol 194 (6) ◽  
pp. 855-871 ◽  
Author(s):  
Ben Moree ◽  
Corey B. Meyer ◽  
Colin J. Fuller ◽  
Aaron F. Straight

Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly.


2007 ◽  
Vol 176 (6) ◽  
pp. 757-763 ◽  
Author(s):  
Paul S. Maddox ◽  
Francie Hyndman ◽  
Joost Monen ◽  
Karen Oegema ◽  
Arshad Desai

Nucleosomes containing the centromere-specific histone H3 variant centromere protein A (CENP-A) create the chromatin foundation for kinetochore assembly. To understand the mechanisms that selectively target CENP-A to centromeres, we took a functional genomics approach in the nematode Caenorhabditis elegans, in which failure to load CENP-A results in a signature kinetochore-null (KNL) phenotype. We identified a single protein, KNL-2, that is specifically required for CENP-A incorporation into chromatin. KNL-2 and CENP-A localize to centromeres throughout the cell cycle in an interdependent manner and coordinately direct chromosome condensation, kinetochore assembly, and chromosome segregation. The isolation of KNL-2–associated chromatin coenriched CENP-A, indicating their close proximity on DNA. KNL-2 defines a new conserved family of Myb DNA-binding domain–containing proteins. The human homologue of KNL-2 is also specifically required for CENP-A loading and kinetochore assembly but is only transiently present at centromeres after mitotic exit. These results implicate a new protein class in the assembly of centromeric chromatin and suggest that holocentric and monocentric chromosomes share a common mechanism for CENP-A loading.


2020 ◽  
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
Francoise Schwager ◽  
...  

AbstractCentromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is established de novo on chromatin during diplotene of meiosis I. Here we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but dispensable for centromere maintenance during embryogenesis. Worms homozygous for a CENP-A tail deletion maintain a functional centromere during development, but give rise to inviable offspring because they fail to re-establish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2, and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


2020 ◽  
Author(s):  
Christian de Groot ◽  
Jack Houston ◽  
Bethany Davis ◽  
Adina Gerson-Gurwitz ◽  
Joost Monen ◽  
...  

ABSTRACTCentromeres are epigenetically defined by the presence of the centromere-specific histone H3 variant CENP-A. A specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, which rely on a CENP-A-dependent centromere. Here, we show that the extended N-terminal tail of C. elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly. Removal of this region of the CENP-A N-Tail prevents loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-Tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-Tail containing the predicted structured region binds to KNL-2, a conserved SANTA and Myb domain-containing protein (referred to as M18BP1 in vertebrates), that is specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode C. briggsae, despite divergence of the N-Tail and KNL-2 primary sequences. Thus, the extended N-Tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates an interaction of the specialized histone fold of CENP-A with KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A-specific chaperone/targeting factor of the Scm3/HJURP family.


2006 ◽  
Vol 174 (6) ◽  
pp. 779-790 ◽  
Author(s):  
Sujata Hajra ◽  
Santanu Kumar Ghosh ◽  
Makkuni Jayaram

The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-μm plasmid. Cse4p-STB association is absolutely dependent on the plasmid partitioning proteins Rep1p and Rep2p and the integrity of the mitotic spindle. The kinetochore mutation ndc10-1 excludes Cse4p from centromeres without dislodging it from STB. Cse4p-STB association lasts from G1/S through late telophase during the cell cycle. The release of Cse4p from STB chromatin is likely mediated through spindle disassembly. A lack of functional Cse4p disrupts the remodeling of STB chromatin by the RSC2 complex, negates Rep2p binding and cohesin assembly at STB, and causes plasmid missegregation. Poaching of a specific histone variant by the plasmid to mark its partitioning locus with a centromere tag reveals yet another one of the molecular trickeries it performs for achieving chromosome- like fidelity in segregation.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3000968
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Isa Özdemir ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
...  

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


2005 ◽  
Vol 16 (12) ◽  
pp. 5649-5660 ◽  
Author(s):  
Kimberly A. Collins ◽  
Andrea R. Castillo ◽  
Sean Y. Tatsutani ◽  
Sue Biggins

Kinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly. Using a conditional centromere, we found that yeast kinetochore assembly is not temporally restricted and can occur in both G1 phase and prometaphase. We performed the first investigation of kinetochore assembly in the absence of the centromeric histone H3 variant Cse4 and found that all proteins tested depend on Cse4 to localize. Consistent with this observation, Cse4-depleted cells had severe chromosome segregation defects. We therefore propose that yeast kinetochore assembly requires both centromeric DNA specificity and centromeric chromatin.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 402 ◽  
Author(s):  
Yohei Niikura, ◽  
Risa Kitagawa ◽  
Katsumi Kitagawa

The centromere plays an essential role in accurate chromosome segregation, and the chromosomal location of the centromere is determined by the presence of a histone H3 variant, centromere protein A (CENP-A), in centromeric nucleosomes. However, the precise mechanisms of deposition, maintenance, and inheritance of CENP-A at centromeres are unclear. We have reported that CENP-A deposition requires ubiquitylation of CENP-A lysine 124 mediated by the E3 ligase activity of Cullin 4A (CUL4A)—RING-box protein 1 (RBX1)—COP9 signalsome complex subunit 8 (COPS8). We have proposed a model of inheritance for CENP-A ubiquitylation, through dimerization between rounds of cell divisions, that maintains the position of centromeres.


2021 ◽  
pp. mbc.E20-12-0798
Author(s):  
Christian de Groot ◽  
Jack Houston ◽  
Bethany Davis ◽  
Adina Gerson-Gurwitz ◽  
Joost Monen ◽  
...  

Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of C. elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-Tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-Tail containing the predicted structured region binds to KNL-2, a conserved SANTA and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode C. briggsae, despite divergence of the N-Tail and KNL-2 primary sequences. Thus, the extended N-Tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A-specific chaperone/targeting factor of the Scm3/HJURP family.


2019 ◽  
Vol 47 (20) ◽  
pp. 10754-10770 ◽  
Author(s):  
Anming Huang ◽  
Leopold Kremser ◽  
Fabian Schuler ◽  
Doris Wilflingseder ◽  
Herbert Lindner ◽  
...  

Abstract Centromeres are specialized chromosomal regions epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A is required for kinetochore formation which is essential for chromosome segregation during mitosis. Spatial restriction of CENP-A to the centromere is tightly controlled. Its overexpression results in ectopic incorporation and the formation of potentially deleterious neocentromeres in yeast, flies and in various human cancers. While the contribution of posttranslational modifications of CENP-A to these processes has been studied in yeast and mammals to some extent, very little is known about Drosophila melanogaster. Here, we show that CENP-A is phosphorylated at serine 20 (S20) by casein kinase II and that in mitotic cells, the phosphorylated form is enriched on chromatin. Importantly, our results reveal that S20 phosphorylation regulates the turn-over of prenucleosomal CENP-A by the SCFPpa-proteasome pathway and that phosphorylation promotes removal of CENP-A from ectopic but not from centromeric sites in chromatin. We provide multiple lines of evidence for a crucial role of S20 phosphorylation in controlling restricted incorporation of CENP-A into centromeric chromatin in flies. Modulation of the phosphorylation state of S20 may provide the cells with a means to fine-tune CENP-A levels in order to prevent deleterious loading to extra-centromeric sites.


Sign in / Sign up

Export Citation Format

Share Document