scholarly journals Cell polarization during monopolar cytokinesis

2008 ◽  
Vol 181 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Chi-Kuo Hu ◽  
Margaret Coughlin ◽  
Christine M. Field ◽  
Timothy J. Mitchison

During cytokinesis, a specialized set of proteins is recruited to the equatorial region between spindle poles by microtubules and actin filaments, enabling furrow assembly and ingression before cell division. We investigate the mechanisms underlying regional specialization of the cytoskeleton in HeLa cells undergoing drug-synchronized monopolar cytokinesis. After forced mitotic exit, the cytoskeleton of monopolar mitotic cells is initially radially symmetric but undergoes a symmetry-breaking reaction that simultaneously polarizes microtubules and the cell cortex, with a concentration of cortical furrow markers into a cap at one side of the cell. Polarization requires microtubules, F-actin, RhoA, Myosin II activity, and Aurora B kinase activity. Aurora B localizes to actin cables in a gap between the monopolar midzone and the furrow-like cortex, suggesting a communication between them. We propose that feedback loops between cortical furrow components and microtubules promote symmetry breaking during monopolar cytokinesis and regional specialization of the cytoskeleton during normal bipolar cytokinesis.

2008 ◽  
Vol 7 (5) ◽  
pp. 894-905 ◽  
Author(s):  
Hui Li ◽  
Qian Chen ◽  
Markus Kaller ◽  
Wolfgang Nellen ◽  
Ralph Gräf ◽  
...  

ABSTRACT Aurora kinases are highly conserved proteins with important roles in mitosis. Metazoans contain two kinases, Aurora A and B, which contribute distinct functions at the spindle poles and the equatorial region respectively. It is not currently known whether the specialized functions of the two kinases arose after their duplication in animal cells or were already present in their ancestral kinase. We show that Dictyostelium discoideum contains a single Aurora kinase, DdAurora, that displays characteristics of both Aurora A and B. Like Aurora A, DdAurora has an extended N-terminal domain with an A-box sequence and localizes at the spindle poles during early mitosis. Like Aurora B, DdAurora binds to its partner DdINCENP and localizes on centromeres at metaphase, the central spindle during anaphase, and the cleavage furrow at the end of cytokinesis. DdAurora also has several unusual properties. DdAurora remains associated with centromeres in anaphase, and this association does not require an interaction with DdINCENP. DdAurora then localizes at the cleavage furrow, but only at the end of cytokinesis. This localization is dependent on DdINCENP and the motor proteins Kif12 and myosin II. Thus, DdAurora may represent the ancestral kinase that gave rise to the different Aurora kinases in animals and also those in other organisms.


2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Geng-Yuan Chen ◽  
Fioranna Renda ◽  
Huaiying Zhang ◽  
Alper Gokden ◽  
Daniel Z. Wu ◽  
...  

To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore–microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.


2020 ◽  
Author(s):  
Geng-Yuan Chen ◽  
Fioranna Renda ◽  
Huaiying Zhang ◽  
Alper Gokden ◽  
Daniel Z. Wu ◽  
...  

AbstractAurora B kinase regulates kinetochore-microtubule interactions to ensure accurate chromosome segregation in cell division. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Current models focus on tension as an input to locally regulate Aurora B activity. Here we show that the outcome of Aurora B activity depends on tension. Using an optogenetic approach to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore-microtubule bundles while maintaining attachment. We propose that tension is a signal inducing distinct error-correction mechanisms, with release or depolymerization advantageous for typical errors characterized by high or low tension, respectively.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


1990 ◽  
Vol 111 (5) ◽  
pp. 1905-1911 ◽  
Author(s):  
L G Cao ◽  
Y L Wang

The contractile ring in dividing animal cells is formed primarily through the reorganization of existing actin filaments (Cao, L.-G., and Y.-L. Wang. 1990. J. Cell Biol. 110:1089-1096), but it is not clear whether the process involves a random recruitment of diffusible actin filaments from the cytoplasm, or a directional movement of cortically associated filaments toward the equator. We have studied this question by observing the distribution of actin filaments that have been labeled with fluorescent phalloidin and microinjected into dividing normal rat kidney (NRK) cells. The labeled filaments are present primarily in the cytoplasm during prometaphase and early metaphase, but become associated extensively with the cell cortex 10-15 min before the onset of anaphase. This process is manifested both as an increase in cortical fluorescence intensity and as movements of discrete aggregates of actin filaments toward the cortex. The concentration of actin fluorescence in the equatorial region, accompanied by a decrease of fluorescence in polar regions, is detected 2-3 min after the onset of anaphase. By directly tracing the distribution of aggregates of labeled actin filaments, we are able to detect, during anaphase and telophase, movements of cortical actin filaments toward the equator at an average rate of 1.0 micron/min. Our results, combined with previous observations, suggest that the organization of actin filaments during cytokinesis probably involves an association of cytoplasmic filaments with the cortex, a movement of cortical filaments toward the cleavage furrow, and a dissociation of filaments from the equatorial cortex.


2015 ◽  
Vol 26 (20) ◽  
pp. 3628-3640 ◽  
Author(s):  
Christine M. Field ◽  
Aaron C. Groen ◽  
Phuong A. Nguyen ◽  
Timothy J. Mitchison

Mitotic spindles specify cleavage planes in early embryos by communicating their position and orientation to the cell cortex using microtubule asters that grow out from the spindle poles during anaphase. Chromatin also plays a poorly understood role. Polyspermic fertilization provides a natural experiment in which aster pairs from the same spindle (sister asters) have chromatin between them, whereas asters pairs from different spindles (nonsisters) do not. In frogs, only sister aster pairs induce furrows. We found that only sister asters recruited two conserved furrow-inducing signaling complexes, chromosome passenger complex (CPC) and Centralspindlin, to a plane between them. This explains why only sister pairs induce furrows. We then investigated factors that influenced CPC recruitment to microtubule bundles in intact eggs and a cytokinesis extract system. We found that microtubule stabilization, optimal starting distance between asters, and proximity to chromatin all favored CPC recruitment. We propose a model in which proximity to chromatin biases initial CPC recruitment to microtubule bundles between asters from the same spindle. Next a positive feedback between CPC recruitment and microtubule stabilization promotes lateral growth of a plane of CPC-positive microtubule bundles out to the cortex to position the furrow.


2001 ◽  
Vol 114 (23) ◽  
pp. 4319-4328
Author(s):  
Sherryl R. Bisgrove ◽  
Darryl L. Kropf

The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases – a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.


2020 ◽  
Author(s):  
Duccio Conti ◽  
Xinhong Song ◽  
Roshan L. Shrestha ◽  
Dominique Braun ◽  
Viji M Draviam

Defects in chromosome-microtubule attachment can cause chromosomal instability, associated with infertility and aggressive cancers. Chromosome-microtubule attachment is mediated by a large macromolecular structure, the kinetochore. Kinetochore pairs are bioriented and pulled by microtubules from opposing spindle poles to ensure the equal segregation of chromosomes. Kinetochore-microtubule attachments lacking opposing-pull are detached by Aurora-B/Ipl1; yet, how mono-oriented attachments that are a prerequisite for biorientation, but lacking opposing-pull are spared is unclear. Using an RNAi-mediated screen, we uncover a unique role for the Astrin-SKAP complex in protecting mono-oriented attachments. We provide the first evidence for how a microtubule-end associated protein senses outer-kinetochore changes specific to end-on attachments and assembles into an outer kinetochore crescent to stabilise mature attachments. We find that Astrin-PP1 and Cyclin-B-CDK1 activities counteract each other to preserve mono-oriented attachments. Thus, cells are not only surveying chromosome-microtubule attachment errors, but they are also actively sensing and stabilising mature attachments independent of biorientation.


Sign in / Sign up

Export Citation Format

Share Document