scholarly journals Mph1p promotes gross chromosomal rearrangement through partial inhibition of homologous recombination

2008 ◽  
Vol 181 (7) ◽  
pp. 1083-1093 ◽  
Author(s):  
Soma Banerjee ◽  
Stephanie Smith ◽  
Ji-Hyun Oum ◽  
Hung-Jiun Liaw ◽  
Ji-Young Hwang ◽  
...  

Gross chromosomal rearrangement (GCR) is a type of genomic instability associated with many cancers. In yeast, multiple pathways cooperate to suppress GCR. In a screen for genes that promote GCR, we identified MPH1, which encodes a 3′–5′ DNA helicase. Overexpression of Mph1p in yeast results in decreased efficiency of homologous recombination (HR) as well as delayed Rad51p recruitment to double-strand breaks (DSBs), which suggests that Mph1p promotes GCR by partially suppressing HR. A function for Mph1p in suppression of HR is further supported by the observation that deletion of both mph1 and srs2 synergistically sensitize cells to methyl methanesulfonate-induced DNA damage. The GCR-promoting activity of Mph1p appears to depend on its interaction with replication protein A (RPA). Consistent with this observation, excess Mph1p stabilizes RPA at DSBs. Furthermore, spontaneous RPA foci at DSBs are destabilized by the mph1Δ mutation. Therefore, Mph1p promotes GCR formation by partially suppressing HR, likely through its interaction with RPA.

2019 ◽  
Vol 116 (39) ◽  
pp. 19552-19562 ◽  
Author(s):  
Justine Sitz ◽  
Sophie Anne Blanchet ◽  
Steven F. Gameiro ◽  
Elise Biquand ◽  
Tia M. Morgan ◽  
...  

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769430 ◽  
Author(s):  
Juan Lv ◽  
Ying Qian ◽  
Xiaoyan Ni ◽  
Xiuping Xu ◽  
Xuejun Dong

The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.


2012 ◽  
Vol 40 (12) ◽  
pp. 5794-5794
Author(s):  
C. Lundin ◽  
M. North ◽  
K. Erixon ◽  
K. Walters ◽  
D. Jenssen ◽  
...  

2000 ◽  
Vol 20 (10) ◽  
pp. 3449-3458 ◽  
Author(s):  
Farooq Nasar ◽  
Craig Jankowski ◽  
Dilip K. Nag

ABSTRACT Inverted-repeated or palindromic sequences have been found to occur in both prokaryotic and eukaryotic genomes. Such repeated sequences are usually short and present at several functionally important regions in the genome. However, long palindromic sequences are rare and are a major source of genomic instability. The palindrome-mediated genomic instability is believed to be due to cruciform or hairpin formation and subsequent cleavage of this structure by structure-specific nucleases. Here we present both genetic and physical evidence that long palindromic sequences (>50 bp) generate double-strand breaks (DSBs) at a high frequency during meiosis in the yeast Saccharomyces cerevisiae. The palindrome-mediated DSB formation depends on the primary sequence of the inverted repeat and the location and length of the repeated units. The DSB formation at the palindrome requires all of the gene products that are known to be responsible for DSB formation at the normal meiosis-specific sites. Since DSBs are initiators of nearly all meiotic recombination events, most of the palindrome-induced breaks appear to be repaired by homologous recombination. Our results suggest that short palindromic sequences are highly stable in vivo. In contrast, long palindromic sequences make the genome unstable by inducing DSBs and such sequences are usually removed from the genome by homologous recombination events.


2005 ◽  
Vol 25 (20) ◽  
pp. 8925-8937 ◽  
Author(s):  
V. Ashutosh Rao ◽  
Angela M. Fan ◽  
LingHua Meng ◽  
Christopher F. Doe ◽  
Phillip S. North ◽  
...  

ABSTRACT Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIα (Top3α) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3α. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (γ-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3α, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with γ-H2AX but not with Top3α or PML. Thus, BLM appears to dissociate from Top3α and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in γ-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.


2021 ◽  
Vol 118 (11) ◽  
pp. e2021963118
Author(s):  
Donna R. Whelan ◽  
Eli Rothenberg

Homologous recombination (HR) is a major pathway for repair of DNA double-strand breaks (DSBs). The initial step that drives the HR process is resection of DNA at the DSB, during which a multitude of nucleases, mediators, and signaling proteins accumulates at the damage foci in a manner that remains elusive. Using single-molecule localization super-resolution (SR) imaging assays, we specifically visualize the spatiotemporal behavior of key mediator and nuclease proteins as they resect DNA at single-ended double-strand breaks (seDSBs) formed at collapsed replication forks. By characterizing these associations, we reveal the in vivo dynamics of resection complexes involved in generating the long single-stranded DNA (ssDNA) overhang prior to homology search. We show that 53BP1, a protein known to antagonize HR, is recruited to seDSB foci during early resection but is spatially separated from repair activities. Contemporaneously, CtBP-interacting protein (CtIP) and MRN (MRE11-RAD51-NBS1) associate with seDSBs, interacting with each other and BRCA1. The HR nucleases EXO1 and DNA2 are also recruited and colocalize with each other and with the repair helicase Bloom syndrome protein (BLM), demonstrating multiple simultaneous resection events. Quantification of replication protein A (RPA) accumulation and ssDNA generation shows that resection is completed 2 to 4 h after break induction. However, both BRCA1 and BLM persist later into HR, demonstrating potential roles in homology search and repair resolution. Furthermore, we show that initial recruitment of BRCA1 and removal of Ku are largely independent of MRE11 exonuclease activity but dependent on MRE11 endonuclease activity. Combined, our observations provide a detailed description of resection during HR repair.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1189-1189
Author(s):  
Xiaojun Liu ◽  
Yingjun Jiang ◽  
Akira Matsuda ◽  
William Plunkett

Abstract Abstract 1189 We hypothesize that the novel deoxyguanosine analogue CNDAG [9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl) guanine] may share the common action mechanism with its cytosine congener CNDAC [2′-C-cyano-2′-deoxy-1-β-D-arabino-pentofuranosylcytosine], a prodrug of which, sapacitabine, is undergoing clinical trials in myeloid leukemias. CNDAC induces single strand breaks following incorporation into DNA. Subsequent processing or DNA replication across the unrepaired nicks would generate double strand breaks (DSBs) [1]. Because cytosine and guanine nucleoside congeners have remarkably different clinical activities, e.g., cytarabine (acute myelogenous leukemia) and nelarabine (T-cell malignancies), it will be useful to pursue investigations to fully characterize the metabolism and actions of CNDAG. This study was aimed at defining cellular response and damage repair mechanisms for two CNDAG prodrugs, 2-amino-9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl)-6-methoxy purine (6-OMe) and 9-(2-C-cyano-2-deoxy-1-β-D-arabino-pentofuranosyl)-2,6-diaminopurine (6-NH2). Each prodrug is a substrate for adenosine deaminase (ADA), the action of which generates CNDAG. First, growth inhibition by both CNDAG prodrugs was dependent upon both concentration and time of exposure; the proliferation of T-cell malignant lines (CCRF-CEM and Jurkat) was suppressed more to B-cell lines (Raji and IM-9). This may be attributed to relatively low activity of deoxycytidine kinase in the latter cell lines. Second, p53 knocked-out and parental HCT116 cells were equally sensitive to CNDAG 6-NH2 in a clonogenic assay, indicating that cytotoxicity of CNDAG is independent of p53 status. Third, similar to CNDAC, CNDAG prodrugs activated repair proteins in multiple DNA damage response pathways, as revealed by immunoblotting. 24-hr incubation of CCRF-CEM cells with 50 microM either prodrug increased the phosphorylation of Ser-1981 on ATM, Ser-345 on Chk1, Thr-68 on Chk2, Ser-966 on SMC1, Ser-343 on Nbs1 and g-H2AX. In contrast, there was no increase in phosphorylation of two other sensor kinases, DNA-PKcs (Ser-2056) which participates in repair of double strand breaks by non-homologous end-joining, and ATR (Ser-428) which senses stalled DNA replication forks. Fourth, we investigated the role of components of homologous recombination (HR) in CNDAG-induced DNA damage repair. The clonogenic survival of human fibroblasts deficient in ATM or those transfected with an empty vector were approximately 20- to 30-fold more sensitive to CNDAG prodrugs than cells complemented with full-length ATM cDNA. Chinese hamster cells deficient in Rad51D or either of the two Rad51-interacting proteins, Xrcc3 and Brca2, conferred greater than 30-fold sensitivity to CNDAG prodrugs relative to respective wild type lines. Similar sensitization was also observed with CNDAC. In contrast, cells lacking HR function were not more sensitive to ara-C or ara-G compared to their parental and complemented cells, indicating HR is a unique repair mechanism for 2`-C-cyano-2`-deoxy-nucleoside analogues. Finally, a cytogenetic approach was used to analyze sister chromatid exchange (SCE, a hallmark for HR) formation in metaphase cells exposed to 2 microM CNDAG 6-NH2. The frequencies of SCEs in AA8 cells incubated with CNDAG for two cell cycles (mean 14.2 per metaphase) were 2-fold of those exposed for one cell cycle (mean 7.4 per metaphase, n>20, p<0.001), the latter greater than control (mean 6 per metaphase, p<0.05). Together these results demonstrate that DNA damage caused by CNDAG activates ATM-dependent signaling pathways and is repaired through homologous recombination. Thus, this is a class effect caused by 2`-C-cyano-2`-deoxy-nucleoside analogues. Our study suggests that despite relatively less potency, CNDAG might have distinct clinical activity from that of CNDAC. [1] Liu X, et al. Blood, Blood. 2010 May 17, Epub ahead of print, PMID: 20479284. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 54 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Anetta Nowosielska

Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document