scholarly journals Molecular model of fission yeast centrosome assembly determined by superresolution imaging

2017 ◽  
Vol 216 (8) ◽  
pp. 2409-2424 ◽  
Author(s):  
Andrew J. Bestul ◽  
Zulin Yu ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.

1993 ◽  
Vol 104 (3) ◽  
pp. 883-898 ◽  
Author(s):  
C. Thompson-Coffe ◽  
D. Zickler

The organization of actin during meiosis and sporulation in the ascus of the filamentous ascomycete Sordaria macrospora was determined by immunofluorescence without removal of the cell wall. Actin is present as a dense cortical network of microfilaments (MF) and plaques, a perinuclear shell of actin in prophase I of meiosis, and a complex array of MF involved in alignment of prespore nuclei and closure of spore cell membranes. The relationship of actin to the previously examined microtubule system of the ascus was determined by double-label immunofluorescence. The cytoskeletal inhibitors nocodazole, cytochalasin D and 2,3-butanedione monoxime were used to examine the roles of actin and myosin in ascus development. Microfilament and microtubule arrays are interdependant; disruption of one network results in abnormalities in the other. Both microfilaments and actin-myosin interaction are required for separation and migration of duplicated spindle pole bodies, septation and sporulation


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 202
Author(s):  
Ralph Gräf

The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of “Cells” features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.


2020 ◽  
Author(s):  
Andrew J. Bestul ◽  
Zulin Yu ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

AbstractProper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB – yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy (SIM), we show that the conserved SUNprotein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for SPB ring protein redistribution and for complete NEBD to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate NEBD and spindle formation through building of an SPB ring structure.SummaryNuclear envelope breakdown is necessary for fission yeast cells to go through mitosis. Bestul et al. show that the SUN protein, Sad1, is vital in carrying out this breakdown and is regulated by the centromere and Polo kinase.


1971 ◽  
Vol 50 (3) ◽  
pp. 737-745 ◽  
Author(s):  
David J. McLaughlin

The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed.


2016 ◽  
Vol 41 (16) ◽  
pp. 3755 ◽  
Author(s):  
Yuxi Wang ◽  
Qiang Guo ◽  
Hongwei Chen ◽  
Minghua Chen ◽  
Sigang Yang ◽  
...  

2020 ◽  
Vol 3 (7) ◽  
pp. e201900620
Author(s):  
Mayuko Segawa ◽  
Dane M Wolf ◽  
Nan W Hultgren ◽  
David S Williams ◽  
Alexander M van der Bliek ◽  
...  

Recent breakthroughs in live-cell imaging have enabled visualization of cristae, making it feasible to investigate the structure–function relationship of cristae in real time. However, quantifying live-cell images of cristae in an unbiased way remains challenging. Here, we present a novel, semi-automated approach to quantify cristae, using the machine-learning Trainable Weka Segmentation tool. Compared with standard techniques, our approach not only avoids the bias associated with manual thresholding but more efficiently segments cristae from Airyscan and structured illumination microscopy images. Using a cardiolipin-deficient cell line, as well as FCCP, we show that our approach is sufficiently sensitive to detect perturbations in cristae density, size, and shape. This approach, moreover, reveals that cristae are not uniformly distributed within the mitochondrion, and sites of mitochondrial fission are localized to areas of decreased cristae density. After a fusion event, individual cristae from the two mitochondria, at the site of fusion, merge into one object with distinct architectural values. Overall, our study shows that machine learning represents a compelling new strategy for quantifying cristae in living cells.


2019 ◽  
Vol 218 (5) ◽  
pp. 1478-1490 ◽  
Author(s):  
Jingjing Chen ◽  
Jennifer M. Gardner ◽  
Zulin Yu ◽  
Sarah E. Smith ◽  
Sean McKinney ◽  
...  

Bipolar spindle formation in yeast requires insertion of centrosomes (known as spindle pole bodies [SPBs]) into fenestrated regions of the nuclear envelope (NE). Using structured illumination microscopy and bimolecular fluorescence complementation, we map protein distribution at SPB fenestrae and interrogate protein–protein interactions with high spatial resolution. We find that the Sad1-UNC-84 (SUN) protein Mps3 forms a ring-like structure around the SPB, similar to toroids seen for components of the SPB insertion network (SPIN). Mps3 and the SPIN component Mps2 (a Klarsicht-ANC-1-Syne-1 domain [KASH]–like protein) form a novel noncanonical linker of nucleoskeleton and cytoskeleton (LINC) complex that is connected in both luminal and extraluminal domains at the site of SPB insertion. The LINC complex also controls the distribution of a soluble SPIN component Bbp1. Taken together, our work shows that Mps3 is a fifth SPIN component and suggests both direct and indirect roles for the LINC complex in NE remodeling.


1977 ◽  
Vol 24 (1) ◽  
pp. 81-93
Author(s):  
C.N. Gordon

Chromatin behaviour during the cell division cycle of the yeast Saccharomyces cerevisiae has been investigated in cells which have been depleted of 90% of their RNA by digestion with ribonuclease. Removal of large amounts of RNA from the yeast nucleus before treatment of the cells with heavy metal fixatives and stains permits chromatin to be visualized with extreme clarity in thin sections of cells processed for electron microscopy by conventional procedures. Spindle pole bodies were also visualized by this treatment, although the associated microtubules were not. Chromatin is dispersed during interphase and occupies the non-nucleolar region of the nucleus which is known to be Feulgen-positive from light microscopy. Because spindle microtubules are not visualized, direct attachment of microtubules to chromatin fibrils could not be verified. However, chromatin was not attached directly to the spindle pole bodies and kinetochore differentiations were not observed in the nucleoplasm. During nuclear division chromatin remains dispersed and does not condense into discrete chromatids. As the nucleus expands into the bud, chromosomal distribution to the daughter cells is thought to result from the separation of the poles of the spindle apparatus with attached chromatin fibrils. However, that such distribution is occurring as the nucleus elongates is not obvious until an advanced stage of nuclear division is reached and partition of the nucleus is nearly complete. Thus, no aggregation of chromatin into metaphase or anaphase plates occurs and the appearance of chromatin during mitosis is essentially the same as in interphase. These observations indicate that the marked changes in the topological structure of chromatin which characterize mitosis in the higher eukaryotes do not occur in S. cerevisiae.


2002 ◽  
Vol 115 (12) ◽  
pp. 2541-2548
Author(s):  
Chikako Nagasato ◽  
Taizo Motomura

We examined the relationship between the spindle orientation and the determination site of cytokinesis in brown algal cells using polyspermic zygotes of Scytosiphon lomentaria. When two male gametes fuse with one female gamete, the zygote has two pairs of centrioles derived from male gametes and three chloroplasts from two male and one female gametes. Just before mitosis, two pairs of centrioles duplicate and migrate towards the future mitotic poles. Spindle MTs develop and three or four spindle poles are formed. In a tri-polar spindle, one pair of centrioles shifts away from the spindle, otherwise, two pairs of centrioles exist adjoining at one spindle pole. Chromosomes arrange at several equators of the spindle. As a result of these multipolar mitoses, three or four daughter nuclei developed. Subsequently, these daughter nuclei form a line along the long axis of the cell. Cell partition always takes place between daughter nuclei, perpendicular to the long axis of the cell. Three or four daughter cells are produced by cytokinesis. Some of the daughter cells after cytokinesis do not have a nucleus, but all of them always contain the centrosome and chloroplast. Therefore, the number of daughter cells always coincides with the number of centrosomes or microtubule organizing centers (MTOCs). These results show that the cytokinetic plane in the brown algae is determined by the position of centrosomes after mitosis and is not dependent on the spindle position.


2008 ◽  
Vol 19 (9) ◽  
pp. 3676-3690 ◽  
Author(s):  
Hongyan Yan ◽  
Wanzhong Ge ◽  
Ting Gang Chew ◽  
Jeng Yeong Chow ◽  
Dannel McCollum ◽  
...  

Cytokinesis in all organisms involves the creation of membranous barriers that demarcate individual daughter cells. In fission yeast, a signaling module termed the septation initiation network (SIN) plays an essential role in the assembly of new membranes and cell wall during cytokinesis. In this study, we have characterized Slk1p, a protein-kinase related to the SIN component Sid2p. Slk1p is expressed specifically during meiosis and localizes to the spindle pole bodies (SPBs) during meiosis I and II in a SIN-dependent manner. Slk1p also localizes to the forespore membrane during sporulation. Cells lacking Slk1p display defects associated with sporulation, leading frequently to the formation of asci with smaller and/or fewer spores. The ability of slk1Δ cells to sporulate, albeit inefficiently, is fully abolished upon compromise of function of Sid2p, suggesting that Slk1p and Sid2p play overlapping roles in sporulation. Interestingly, increased expression of the syntaxin Psy1p rescues the sporulation defect of sid2-250 slk1Δ. Thus, it is likely that Slk1p and Sid2p play a role in forespore membrane assembly by facilitating recruitment of components of the secretory apparatus, such as Psy1p, to allow membrane expansion. These studies thereby provide a novel link between the SIN and vesicle trafficking during cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document