Influence of the centrosome in cytokinesis of brown algae: polyspermic zygotes of Scytosiphon lomentaria (Scytosiphonales,Phaeophyceae)

2002 ◽  
Vol 115 (12) ◽  
pp. 2541-2548
Author(s):  
Chikako Nagasato ◽  
Taizo Motomura

We examined the relationship between the spindle orientation and the determination site of cytokinesis in brown algal cells using polyspermic zygotes of Scytosiphon lomentaria. When two male gametes fuse with one female gamete, the zygote has two pairs of centrioles derived from male gametes and three chloroplasts from two male and one female gametes. Just before mitosis, two pairs of centrioles duplicate and migrate towards the future mitotic poles. Spindle MTs develop and three or four spindle poles are formed. In a tri-polar spindle, one pair of centrioles shifts away from the spindle, otherwise, two pairs of centrioles exist adjoining at one spindle pole. Chromosomes arrange at several equators of the spindle. As a result of these multipolar mitoses, three or four daughter nuclei developed. Subsequently, these daughter nuclei form a line along the long axis of the cell. Cell partition always takes place between daughter nuclei, perpendicular to the long axis of the cell. Three or four daughter cells are produced by cytokinesis. Some of the daughter cells after cytokinesis do not have a nucleus, but all of them always contain the centrosome and chloroplast. Therefore, the number of daughter cells always coincides with the number of centrosomes or microtubule organizing centers (MTOCs). These results show that the cytokinetic plane in the brown algae is determined by the position of centrosomes after mitosis and is not dependent on the spindle position.

2015 ◽  
Vol 26 (7) ◽  
pp. 1286-1295 ◽  
Author(s):  
Francisco Lázaro-Diéguez ◽  
Iaroslav Ispolatov ◽  
Anne Müsch

All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.


1999 ◽  
Vol 144 (5) ◽  
pp. 947-961 ◽  
Author(s):  
Laifong Lee ◽  
Saskia K. Klee ◽  
Marie Evangelista ◽  
Charles Boone ◽  
David Pellman

Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Δ cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Δ cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.


2019 ◽  
Vol 30 (13) ◽  
pp. 1598-1609 ◽  
Author(s):  
Erica G. Colicino ◽  
Katrina Stevens ◽  
Erin Curtis ◽  
Lindsay Rathbun ◽  
Michael Bates ◽  
...  

The mitotic kinase, polo-like kinase 1 (PLK1), facilitates the assembly of the two mitotic spindle poles, which are required for the formation of the microtubule-based spindle that ensures appropriate chromosome distribution into the two forming daughter cells. Spindle poles are asymmetric in composition. One spindle pole contains the oldest mitotic centriole, the mother centriole, where the majority of cenexin, the mother centriole appendage protein and PLK1 binding partner, resides. We hypothesized that PLK1 activity is greater at the cenexin-positive older spindle pole. Our studies found that PLK1 asymmetrically localizes between spindle poles under conditions of chromosome misalignment, and chromosomes tend to misalign toward the oldest spindle pole in a cenexin- and PLK1-dependent manner. During chromosome misalignment, PLK1 activity is increased specifically at the oldest spindle pole, and this increase in activity is lost in cenexin-depleted cells. We propose a model where PLK1 activity elevates in response to misaligned chromosomes at the oldest spindle pole during metaphase.


2014 ◽  
Vol 25 (18) ◽  
pp. 2720-2734 ◽  
Author(s):  
Mengqiao Wang ◽  
Ruth N. Collins

An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit.


1999 ◽  
Vol 146 (5) ◽  
pp. 1019-1032 ◽  
Author(s):  
Chandra L. Theesfeld ◽  
Javier E. Irazoqui ◽  
Kerry Bloom ◽  
Daniel J. Lew

In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to de- fects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.


2017 ◽  
Vol 216 (8) ◽  
pp. 2409-2424 ◽  
Author(s):  
Andrew J. Bestul ◽  
Zulin Yu ◽  
Jay R. Unruh ◽  
Sue L. Jaspersen

Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.


1977 ◽  
Vol 72 (2) ◽  
pp. 368-379 ◽  
Author(s):  
S Brenner ◽  
A Branch ◽  
S Meredith ◽  
M W Berns

Light and electron microscopy were used to study somatic cell reduction division occurring spontaneously in tetraploid populations of rat kangaroo Potorous tridactylis (PtK2) cells in vitro. Light microscopy coupled with time-lapse photography documented the pattern of reduction division which includes an anaphase-like movement of double chromatid chromosomes to opposite spindle poles followed by the organization of two separate metaphase plates and synchronous anaphase division to form four poles and four daughter nuclei. The resulting daughter cells were isolated and cloned, showing their viability, and karyotyped to determine their ploidy. Ultrastructural analysis of cells undergoing reduction consistently revealed two duplexes of centrioles (one at each of two spindle poles) and two spindle poles in each cell that lacked centrioles but with microtubules terminating in a pericentriolar-like cloud of material. These results suggest that the centriole is not essential for spindle pole formation and division and implicate the could region as a necessary component of the spindle apparatus.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4469-4481 ◽  
Author(s):  
Meng-Fu Bryan Tsou ◽  
Adam Hayashi ◽  
Leah R. DeBella ◽  
Garth McGrath ◽  
Lesilee S. Rose

Asymmetric cell division depends on coordinating the position of the mitotic spindle with the axis of cellular polarity. We provide evidence that LET-99 is a link between polarity cues and the downstream machinery that determines spindle positioning in C. elegans embryos. In let-99 one-cell embryos, the nuclear-centrosome complex exhibits a hyperactive oscillation that is dynein dependent, instead of the normal anteriorly directed migration and rotation of the nuclear-centrosome complex. Furthermore, at anaphase in let-99 embryos the spindle poles do not show the characteristic asymmetric movements typical of wild type animals. LET-99 is a DEP domain protein that is asymmetrically enriched in a band that encircles P lineage cells. The LET-99 localization pattern is dependent on PAR polarity cues and correlates with nuclear rotation and anaphase spindle pole movements in wild-type embryos, as well as with changes in these movements in par mutant embryos. In particular, LET-99 is uniformly localized in one-cell par-3 embryos at the time of nuclear rotation. Rotation fails in spherical par-3 embryos in which the eggshell has been removed, but rotation occurs normally in spherical wild-type embryos. The latter results indicate that nuclear rotation in intact par-3 embryos is dictated by the geometry of the oblong egg and are consistent with the model that the LET-99 band is important for rotation in wild-type embryos. Together, the data indicate that LET-99 acts downstream of PAR-3 and PAR-2 to determine spindle positioning, potentially through the asymmetric regulation of forces on the spindle.


2009 ◽  
Vol 184 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Jen-Hsuan Wei ◽  
Joachim Seemann

The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1441
Author(s):  
En-Ju Chou ◽  
Tang K. Tang

Autosomal recessive primary microcephaly (MCPH) is a complex neurodevelopmental disorder characterized by a small brain size with mild to moderate intellectual disability. We previously demonstrated that human microcephaly RTTN played an important role in regulating centriole duplication during interphase, but the role of RTTN in mitosis is not fully understood. Here, we show that RTTN is required for normal mitotic progression and correct spindle position. The depletion of RTTN induces the dispersion of the pericentriolar protein γ-tubulin and multiple mitotic abnormalities, including monopolar, abnormal bipolar, and multipolar spindles. Importantly, the loss of RTTN altered NuMA/p150Glued congression to the spindle poles, perturbed NuMA cortical localization, and reduced the number and the length of astral microtubules. Together, our results provide a new insight into how RTTN functions in mitosis.


Sign in / Sign up

Export Citation Format

Share Document