scholarly journals LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching

2018 ◽  
Vol 217 (5) ◽  
pp. 1869-1882 ◽  
Author(s):  
Tanner C. Fadero ◽  
Therese M. Gerbich ◽  
Kishan Rana ◽  
Aussie Suzuki ◽  
Matthew DiSalvo ◽  
...  

Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution.

2017 ◽  
Author(s):  
Tanner C Fadero ◽  
Therese M Gerbich ◽  
Kishan Rana ◽  
Aussie Suzuki ◽  
Matthew DiSalvo ◽  
...  

Fluorescence microscopy is a powerful approach for studying sub-cellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel LSFM method: Lateral Interference Tilted Excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically-limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution.


2017 ◽  
Author(s):  
Yicong Wu ◽  
Abhishek Kumar ◽  
Corey Smith ◽  
Evan Ardiel ◽  
Panagiotis Chandris ◽  
...  

AbstractLight-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, gentle imaging of live biological specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of multiple views, obtaining 4 complementary views in 250 ms, half the period it would otherwise take to collect only two views in symmetric dual-view selective plane illumination microscopy (diSPIM). We also report a modified deconvolution algorithm that removes the associated epifluorescence contamination and fuses all views for resolution recovery. Furthermore, we enhance spatial resolution (to < 300 nm in all three dimensions) by applying our method to a new asymmetric diSPIM, permitting simultaneous acquisition of two high-resolution views otherwise difficult to obtain due to steric constraints at high numerical aperture (NA). We demonstrate the broad applicability of our method in a variety of samples of moderate (< 50 μm) thickness, studying mitochondrial, membrane, Golgi, and microtubule dynamics in single cells and calcium activity in nematode embryos.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Xiaopeng Chen ◽  
Junyu Ping ◽  
Yixuan Sun ◽  
Chengqiang Yi ◽  
Sijian Liu ◽  
...  

Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here...


2012 ◽  
Vol 6 (11-12) ◽  
pp. 920-928 ◽  
Author(s):  
Matthew Jemielita ◽  
Michael J. Taormina ◽  
April DeLaurier ◽  
Charles B. Kimmel ◽  
Raghuveer Parthasarathy

Lab on a Chip ◽  
2015 ◽  
Vol 15 (13) ◽  
pp. 2767-2780 ◽  
Author(s):  
Jan Müller ◽  
Marco Ballini ◽  
Paolo Livi ◽  
Yihui Chen ◽  
Milos Radivojevic ◽  
...  

Novel CMOS-based microelectrode array to enable high-spatiotemporal- resolution access to neuronal preparations on subcellular, cellular, and network level.


2021 ◽  
Author(s):  
Peng Fei

Long-term visualization of the dynamic organelle-organelle or protein-organelle interactions throughout the three-dimensional space of whole live cells is essential to better understand their functions, but this task remains challenging due to the limitations of existing three-dimensional fluorescence microscopy techniques, such as an insufficient axial resolution, low volumetric imaging rate, and photobleaching. Here, we present the combination of a progressive deep-learning superresolution strategy with a dual-ring-modulated SPIM design capable of visualizing the dynamics of intracellular organelles in live cells for hours at an isotropic spatial resolution of ~100 nm in three dimensions and a temporal resolution up to ~17 Hz. With a compelling spatiotemporal resolution, we substantially reveal the complex spatial relationships and interactions between the endoplasmic reticulum (ER) and mitochondria throughout live cells, providing new insights into ER-mediated mitochondrial division. We also localized the motion of Drp1 oligomers in three dimensions and observed Drp1-mediated mitochondrial branching for the first time.


Author(s):  
Rüdiger Stirnberg ◽  
Tony Stöcker

AbstractPurposeA segmented k-space blipped-CAIPI (skipped-CAIPI) sampling strategy for echo planar imaging (EPI) is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing (CAIPIRINHA) pattern.Theory and MethodsWith previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPIRINHA pattern: either with slice gradient blips (blipped-CAIPI), or following a shot-selective approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing.ResultsTemporal signal-to-noise ratios of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty.ConclusionsSkipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of signal-to-noise ratio and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPIRINHA pattern. Even at moderate resolutions, the independence of sampling pattern, echo time and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.


Sign in / Sign up

Export Citation Format

Share Document