tumor spheroids
Recently Published Documents


TOTAL DOCUMENTS

651
(FIVE YEARS 225)

H-INDEX

52
(FIVE YEARS 10)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Gaëtan Mary ◽  
Brice Malgras ◽  
Jose Efrain Perez ◽  
Irène Nagle ◽  
Nathalie Luciani ◽  
...  

A growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon application of a permanent magnet, the magnetic tumor spheroids (formed from colon cancer cells or from glioblastoma cells) are compressed by 50% of their initial diameters. Such significant deformation triggers an increase in the spheroid proliferation for both cell lines, correlated with an increase in the number of proliferating cells toward its center and associated with an overexpression of the matrix metalloproteinase−9 (MMP−9). In vivo peritoneal injection of the spheroids made from colon cancer cells confirmed the increased aggressiveness of the compressed spheroids, with almost a doubling of the peritoneal cancer index (PCI), as compared with non-stimulated spheroids. Moreover, liver metastasis of labeled cells was observed only in animals grafted with stimulated spheroids. Altogether, these results demonstrate that a large compression of tumor spheroids enhances cancer proliferation and metastatic process and could have implications in clinical procedures where tumor compression plays a role.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Vinzenz Särchen ◽  
Senthan Shanmugalingam ◽  
Sarah Kehr ◽  
Lisa Marie Reindl ◽  
Victoria Greze ◽  
...  

AbstractThe induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenzhong Chen ◽  
Seokgyu Han ◽  
Arleen Sanny ◽  
Dorothy Leung-Kwan Chan ◽  
Danny van Noort ◽  
...  

Abstract Background Most high-throughput screening (HTS) systems studying the cytotoxic effect of chimeric antigen receptor (CAR) T cells on tumor cells rely on two-dimensional cell culture that does not recapitulate the tumor microenvironment (TME). Tumor spheroids, however, can recapitulate the TME and have been used for cytotoxicity assays of CAR T cells. But a major obstacle to the use of tumor spheroids for cytotoxicity assays is the difficulty in separating unbound CAR T and dead tumor cells from spheroids. Here, we present a three-dimensional hanging spheroid plate (3DHSP), which facilitates the formation of spheroids and the separation of unbound and dead cells from spheroids during cytotoxicity assays. Results The 3DHSP is a 24-well plate, with each well composed of a hanging dripper, spheroid wells, and waste wells. In the dripper, a tumor spheroid was formed and mixed with CAR T cells. In the 3DHSP, droplets containing the spheroids were deposited into the spheroid separation well, where unbound and dead T and tumor cells were separated from the spheroid through a gap into the waste well by tilting the 3DHSP by more than 20°. Human epidermal growth factor receptor 2 (HER2)-positive tumor cells (BT474 and SKOV3) formed spheroids of approximately 300–350 μm in diameter after 2 days in the 3DHSP. The cytotoxic effects of T cells engineered to express CAR recognizing HER2 (HER2-CAR T cells) on these spheroids were directly measured by optical imaging, without the use of live/dead fluorescent staining of the cells. Our results suggest that the 3DHSP could be incorporated into a HTS system to screen for CARs that enable T cells to kill spheroids formed from a specific tumor type with high efficacy or for spheroids consisting of tumor types that can be killed efficiently by T cells bearing a specific CAR. Conclusions The results suggest that the 3DHSP could be incorporated into a HTS system for the cytotoxic effects of CAR T cells on tumor spheroids. Graphical Abstract


Author(s):  
Shilpaa Mukundan ◽  
Jordan Bell ◽  
Matthew Teryek ◽  
Charles Hernandez ◽  
Andrea C. Love ◽  
...  

Author(s):  
Heidelinde Fiegl ◽  
Judith Hagenbuchner ◽  
Christiana Kyvelidou ◽  
Beata Seeber ◽  
Sieghart Sopper ◽  
...  

Author(s):  
Nobuyuki Morimoto ◽  
Keisuke Ota ◽  
Yuki Miura ◽  
Heungsoo Shin ◽  
Masaya Yamamoto

Multicellular tumor spheroids (MCTSs) are attractive for drug screening before animal tests because they emulate an in vivo microenvironment. The permeability of the MCTSs and tumor tissues by the candidate...


Author(s):  
In Yeong Bae ◽  
Wooshik Choi ◽  
Seung Ja Oh ◽  
Chansoo Kim ◽  
Sang‐Heon Kim

2021 ◽  
pp. 2100124
Author(s):  
Kirsten De Ridder ◽  
Navpreet Tung ◽  
Jan-Timon Werle ◽  
Léa Karpf ◽  
Robin Maximilian Awad ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Aziz UR RAHMAN

Abstract Background: Tumor tissues resist penetration of therapeutic molecules. Multicellular tumor spheroids (MCTSs) were used as an in vitro tumor model. The aim of this study was to determine the growth of MCTSs with the age of spheroids, which could be applied and compared with in vivo drug uptake and penetration. Method: Spheroids were generated by liquid overlay techniques, and their diameter was measured by confocal microscopy for up to two weeks. The trypan blue exclusion method was used to count dead and live cells separately via a hemocytometer. Results: The pentaphysical characteristics of spheroids, including diameter, cell number, volume per cell, viability status, and estimated shell of viable and core of dead cells, were determined. The growth of spheroids was linear over the first week but declined in the 2nd week, which may be due to an overconcentration of dead cells and degraded products inside the spheroids, hence lowering the ratio of live cells in spheroids. Compaction of spheroids occurs from day 3 to day 7, with the mature spheroids having a low amount of extracellular space compared to intracellular volume. Conclusion: Age-oriented growth of MCTSs provides a rationale to predict less rapid penetration as spheroids get older and could be correlated with in vivo tumors to predict pharmaceutical and therapeutic intervention.


2021 ◽  
Author(s):  
Nontaphat Thongsin ◽  
Methichit Wattanapanitch

Immunotherapy has emerged as a promising therapeutic approach for treating several forms of cancer. Adoptive cell transfer of immune cells, such as natural killer (NK) cells, provides a powerful therapeutic potential against tumor cells. In the past decades, two-dimensional (2D) tumor models have been used to investigate the effectiveness of immune cell killing. However, the 2D tumor models exhibit less structural complexity and cannot recapitulate the physiological condition of the tumor microenvironment. Thus, the effectiveness of immune cells against tumor cells using these models cannot fully be translated to clinical studies. In order to gain a deeper insight into immune cell-tumor interaction, more physiologically relevant in vivo-like three-dimensional (3D) tumor models have been developed. These 3D tumor models can mimic the dynamic cellular activities, making them much closer to the in vivo tumor profiles. Here, we describe a simple and effective protocol to study the cytotoxic activity of primary human NK cells toward the 3D tumor spheroids. Our protocol includes isolation and expansion of human NK cells, labeling and formation of tumor spheroids, co-culture of NK cells and tumor spheroids, and evaluation of cytotoxic activity using a confocal microscope. This protocol is also applicable to other types of tumors and immune cells.


Sign in / Sign up

Export Citation Format

Share Document