scholarly journals THICK FILAMENTS IN VASCULAR SMOOTH MUSCLE

1971 ◽  
Vol 49 (3) ◽  
pp. 636-649 ◽  
Author(s):  
Carrick E. Devine ◽  
Andrew P. Somlyo

Two sets of myofilaments were demonstrated after incubation of strips of rabbit portal-anterior mesenteric vein under moderate stretch in a physiological salt solution. Thick filaments had a mean diameter of 18 nm and reached a maximum length of 1.4 µm with a mean length of 0.61 µm. In transverse sections, 2.5–5 nm particles were resolved as subunits of the thick filaments. Thin filaments had an average diameter of 8.4 nm and generally conformed to the structure believed to represent actin filaments in smooth and striated muscles. In the areas of maximum concentration there were 160–328 thick filaments/µm2 and the lowest ratio of thin to thick filaments was 12:1. Thick filaments were present in approximately equal numbers in vascular smooth muscle relaxed by theophylline, in Ca++-free solution, or contracted by norepinephrine. The same preparatory procedures used with vascular smooth muscle also enabled us to visualize thick filaments in guinea pig and rabbit taenia coli and vas deferens.

When fixation of taenia coli from adult guinea-pigs is initiated at 37 °C only thin filaments and 10 nm filaments are preserved. At 37 °G (i.e. as in vivo ) thick filaments are very labile; to preserve them during fixation much thinner muscles must be used such as taenia coli from very young animals. The thick filaments from taenia coli of adult guinea-pigs can however be stabilized by pre-cooling the living muscles before fixation at 37 °C. An ion analysis of these muscles in vivo, and during fixation at 37 and 4 °C, showed that there is a K and Na ion exchange in the tissue both on cooling and during fixation; the exchange is most rapid on fixation particularly when it takes place at 37 °C. The Mg 2+ content appears to be unaffected by these conditions, but the Ca 2+ content rises both on cooling and during fixation (when the uptake is unexpectedly large). The selective destruction of the cell membrane is greatest when fixation is carried out at 37 °C. It is suggested that pre-cooling may alter thick filaments.


1982 ◽  
Vol 95 (2) ◽  
pp. 403-413 ◽  
Author(s):  
M Bond ◽  
A V Somlyo

The arrangement of cytoplasmic dense bodies in vertebrate smooth muscle and their relationship to the thin filaments was studied in cells from rabbit vas deferens and portal vein which were made hyperpermeable (skinned) with saponin and incubated with myosin subfragment 1 (S-1). The dense bodies were obliquely oriented, elongated structures sometimes appearing as chains up to 1.5 microns in length; they were often continuous across the cell for 200 to 300 nm and were interconnected by an oblique network of 10-nm filaments. The arrowheads, formed by S-1 decoration of actins, which inserted into both the sides and ends of dense bodies, always pointed away from the dense body, similar to the polarity of the thin filaments at the Z-bands of skeletal muscle. These results show that the cytoplasmic dense bodies function as anchoring sites for the thin filaments and indicate that the thin filaments, thick filaments, and dense bodies constitute a contractile unit.


1970 ◽  
Vol 47 (1) ◽  
pp. 183-196 ◽  
Author(s):  
Robert V. Rice ◽  
Joan A. Moses ◽  
G. M. McManus ◽  
Arlene C. Brady ◽  
Lorraine M. Blasik

Ordered arrays of thin filaments (65 A diameter) along with other apparently random arrangements of thin and thick filaments (100–200 A diameter) are observed in contracted guinea pig taenia coli rapidly fixed in glutaraldehyde. The thin-filament arrays vary from a few to more than 100 filaments in each array. The arrays are scattered among isolated thin and thick filaments. Some arrays are regular such as hexagonal; other arrays tend to be circular. However, few examples of rosettes with regular arrangements of thin filaments surrounding thick filaments are seen. Optical transforms of electron micrographs of thin-filament arrays give a nearest-neighbor spacing of the thin filaments in agreement with the "actin" filament spacing from x-ray diffraction experiments. Many thick filaments are closely associated with thin-filament arrays. Some thick filaments are hollow circles, although triangular shapes are also found. Thin-filament arrays and thick filaments extend into the cell for distances of at least a micron. Partially relaxed taenia coli shows thin-filament arrays but few thick filaments. The suggestion that thick filaments aggregate prior to contraction and disaggregate during relaxation is promoted by these observations. The results suggest that a sliding filament mechanism operates in smooth muscle as well as in striated muscle.


1969 ◽  
Vol 42 (3) ◽  
pp. 683-694 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Fresh taenia coli and chicken gizzard smooth muscle were studied in the contracted and relaxed states. Thick and thin filaments were observed in certain (but not all) cells fixed in contraction. Relaxed smooth muscle contained only thin filaments. Several other morphological differences were observed between contracted and relaxed smooth muscle. The nuclear chromatin is clumped in contraction and evenly dispersed in the relaxed state. The sarcolemma is more highly vesiculated in contraction than in relaxation. In contraction, the sarcoplasm also appears more electron opaque. Over-all morphological differences between cells fixed in isometric and in unloaded contraction were also noticeable. The results suggest a sliding filament mechanism of smooth muscle contraction; however, in smooth muscle, unlike striated muscle, the thick filaments appear to be in a highly labile condition in the contractile process. The relation between contraction and a possible change in pH is also discussed.


1968 ◽  
Vol 37 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Robert E. Kelly ◽  
Robert V. Rice

Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.


1986 ◽  
Vol 237 (2) ◽  
pp. 605-607 ◽  
Author(s):  
S B Marston

The Ca2+-dependent regulation of the activation of myosin MgATPase by vascular-smooth-muscle thin filaments involves caldesmon. This effect may be due to the direct interaction of caldesmon with a Ca2+-binding protein such as calmodulin or phosphorylation of caldesmon by a Ca2+-dependent kinase. I have found that Ca2+ switches on aorta thin filaments in less than 10 s, whereas the caldesmon in the thin filaments is phosphorylated only slowly (half-time greater than 10 min) and the maximum phosphorylation is very low (1 molecule per 7 molecules of caldesmon). I conclude that the phosphorylation of caldesmon hypothesis is untenable.


Sign in / Sign up

Export Citation Format

Share Document