scholarly journals Sequence of a highly divergent beta tubulin gene reveals regional heterogeneity in the beta tubulin polypeptide.

1984 ◽  
Vol 99 (5) ◽  
pp. 1754-1760 ◽  
Author(s):  
K F Sullivan ◽  
D W Cleveland

The nucleotide sequence of a chicken genomic DNA segment containing the chicken beta 4 tubulin gene has been determined. The predicted amino acid sequence of beta 4 is surprisingly divergent from that of the chicken beta 2 gene that encodes the dominant neural beta tubulin. beta 4 differs from beta 2 at 36 residue positions and encodes a polypeptide that is four amino acids longer, yielding a divergence of 8.9% between the two beta tubulin isotypes. While many of the amino acid substitutions are conservative, several involve significant alteration in the physiochemical properties of the residue. Furthermore, the amino acid substitution positions are not randomly located within the primary sequence but are distinctly clustered: major divergence occurs in the carboxy-terminal region beyond residue 430 and within the second protein coding exon segments of the genes. In addition, large regions of absolute sequence conservation are also present. Certain sequences within the heterogeneous regions are conserved in other species, indicating that these regions are under positive evolutionary selection pressure and are therefore probably essential for some aspect of beta-tubulin function. These findings strongly suggest that regional amino acid sequence heterogeneity may play an important role in the establishment of functionally differentiated beta tubulin polypeptides.

1992 ◽  
Vol 117 (2) ◽  
pp. 449-459 ◽  
Author(s):  
KR Gehlsen ◽  
P Sriramarao ◽  
LT Furcht ◽  
AP Skubitz

The purpose of this study was to identify the binding site(s) within laminin for the alpha 3 beta 1 integrin receptor. It has been previously shown, using proteolytic fragments and anti-laminin antibodies, that the region in laminin for alpha 3 beta 1 integrin binding is localized to the carboxy-terminal region at the end of the long arm (Gehlsen, K. R., E. Engvall, K. Dickerson, W. S. Argraves, and E. Ruoslahti. 1989. J. Biol. Chem. 264:19034-19038; Tomaselli, K. J., D. E. Hall, L. T. Reichardt, L. A. Flier, K. R. Gehlsen, D. C. Turner, and S. Carbonetto. 1990. Neuron. 5:651-662). Using synthetic peptides, we have identified an amino acid sequence within the carboxy-terminal region of the laminin A chain that is recognized by the alpha 3 beta 1 integrin. The amino acid sequence represented by the synthetic peptide GD-6 (KQNCLSSRASFRGCVRNLRLSR residues numbered 3011 to 3032) of the globular domain of the murine A chain supports cell attachment and inhibits cell adhesion to laminin-coated surfaces. By affinity chromatography, peptide GD-6-Sepharose specifically bound solubilized alpha 3 beta 1 from extracts of surface-iodinated cells in a cation-dependent manner, while it did not bind other integrins. In addition, exogenous peptide GD-6 specifically eluted bound alpha 3 beta 1 from laminin-Sepharose columns but did not elute the alpha 3 beta 1 integrin from a fibronectin-Sepharose column. Using integrin subunit-specific monoclonal antibodies, only those antibodies against the alpha 3 and beta 1 subunits inhibited cell adhesion to peptide GD-6-coated surfaces. Finally, a polyclonal antibody made against peptide GD-6 reacted specifically with both murine and human laminin and significantly inhibited cell adhesion to laminin-coated surfaces but not those coated with other matrix proteins. These results identify the laminin A chain amino acid sequence of peptide GD-6 as representing a binding site in laminin for the alpha 3 beta 1 integrin.


1984 ◽  
Vol 4 (12) ◽  
pp. 2686-2696 ◽  
Author(s):  
J Youngblom ◽  
J A Schloss ◽  
C D Silflow

The two beta-tubulin genes of the unicellular green alga Chlamydomonas reinhardtii are expressed coordinately after deflagellation and produce two transcripts of 2.1 and 2.0 kilobases. Full-length cDNA clones corresponding to the transcript of each gene were isolated. DNA sequences were obtained from the cDNA clones and from cloned tubulin gene fragments. Both genes contained 1,332 base pairs of coding sequence, with only 19 nucleotide differences between the genes. Because all the differences occurred at the third base position of a codon and did not change the predicted amino acid sequence, we concluded that both beta-tubulin genes code for the same protein of 443 amino acids. The predicted amino acid sequence is 89 and 72% homologous with beta-tubulins from chicken and yeast cells, respectively. Each gene had three intervening sequences, which occurred at identical positions. Although the first two intervening sequences were not conserved between the two genes, the nucleotide sequence of the third intervening sequence was 89% conserved between the genes. The codon usage in the tubulin genes of C. reinhardtii was very biased: only 37 different codons were used. Striking differences occurred between the codons used in these nuclear genes and C. reinhardtii chloroplast genes.


1986 ◽  
Vol 103 (5) ◽  
pp. 1903-1910 ◽  
Author(s):  
D Wang ◽  
A Villasante ◽  
S A Lewis ◽  
N J Cowan

We describe the structure of a novel and unusually heterologous beta-tubulin isotype (M beta 1) isolated from a mouse bone marrow cDNA library, and a second isotype (M beta 3) isolated from a mouse testis cDNA library. Comparison of M beta 1 and M beta 3 with the completed (M beta 4, M beta 5) or extended (M beta 2) sequence of three previously described beta-tubulin isotypes shows that each includes a distinctive carboxy-terminal region, in addition to multiple amino acid substitutions throughout the polypeptide chain. In every case where a mammalian interspecies comparison can be made, both the carboxy-terminal and internal amino acid substitutions that distinguish one isotype from another are absolutely conserved. We conclude that these characteristic differences are important in determining functional distinctions between different kinds of microtubule. The amino acid homologies between M beta 2, M beta 3, M beta 4, and M beta 5 are in the range of 95-97%; however the homology between M beta 1 and all the other isotypes is very much less (78%). The dramatic divergence in M beta 1 is due to multiple changes that occur throughout the polypeptide chain. The overall level of expression of M beta 1 is low, and is restricted to those tissues (bone marrow, spleen, developing liver and lung) that are active in hematopoiesis in the mouse. We predict that the M beta 1 isotype is functionally specialized for assembly into the mammalian marginal band.


1988 ◽  
Vol 253 (3) ◽  
pp. 915-918 ◽  
Author(s):  
P M Ealing ◽  
R Casey

A near full-length cDNA for a pea (Pisum sativum) seed lipoxygenase was isolated and sequenced. It has a protein coding sequence (2583 bp), 5′ (59 bp) and 3′ (191 bp) non-coding regions, and a poly(A) tail (20 bp). The predicted amino acid sequence indicates a polypeptide of Mr 97,628 that shows about 86% amino acid identity with a soya-bean lipoxygenase 3 protein sequence [Yenofsky, Fine & Liu (1988) Mol. Gen. Genet. 211, 215-222]. The cDNA directs the transcription of mRNA that can be translated to give an anti-lipoxygenase-precipitable polypeptide in vitro.


1996 ◽  
Vol 109 (6) ◽  
pp. 1497-1507
Author(s):  
K.R. Zachow ◽  
D. Bentley

Microtubule-associated proteins can influence the organization, stability and dynamics of microtubules. We characterize a novel protein that associates with microtubules as assessed by immunofluorescence, immunoelectron microscopy, and co-sedimentation. The protein is expressed heavily in embryonic neurons and, to a lesser extent, in epithelial and mesodermal cells. The cDNA sequence predicts a protein of 1,547 amino acids and approximately 170 kDa. Immunoblot of embryo lysate demonstrates bands of approximately 240 and 260 kDa. The predicted amino acid sequence contains 77 potential serine/threonine phosphorylation sites. A distinctive feature is a predicted alpha-helical central domain comprising 21 identical repeats of an 11 amino acid sequence (PLEELRKDAAE). The protein is thermostable and has two major charge-domains: the amino-terminal 80% has an estimated pI of 4.0 and the carboxy-terminal 20%, a pI of 12.2. The protein shares several general biochemical and molecular features of MAPs, but its sequence is not similar to that of any described MAP.


1984 ◽  
Vol 4 (12) ◽  
pp. 2686-2696
Author(s):  
J Youngblom ◽  
J A Schloss ◽  
C D Silflow

The two beta-tubulin genes of the unicellular green alga Chlamydomonas reinhardtii are expressed coordinately after deflagellation and produce two transcripts of 2.1 and 2.0 kilobases. Full-length cDNA clones corresponding to the transcript of each gene were isolated. DNA sequences were obtained from the cDNA clones and from cloned tubulin gene fragments. Both genes contained 1,332 base pairs of coding sequence, with only 19 nucleotide differences between the genes. Because all the differences occurred at the third base position of a codon and did not change the predicted amino acid sequence, we concluded that both beta-tubulin genes code for the same protein of 443 amino acids. The predicted amino acid sequence is 89 and 72% homologous with beta-tubulins from chicken and yeast cells, respectively. Each gene had three intervening sequences, which occurred at identical positions. Although the first two intervening sequences were not conserved between the two genes, the nucleotide sequence of the third intervening sequence was 89% conserved between the genes. The codon usage in the tubulin genes of C. reinhardtii was very biased: only 37 different codons were used. Striking differences occurred between the codons used in these nuclear genes and C. reinhardtii chloroplast genes.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 267-286 ◽  
Author(s):  
J D Fackenthal ◽  
J A Hutchens ◽  
F R Turner ◽  
E C Raff

Abstract We have determined the lesions in a number of mutant alleles of beta Tub85D, the gene that encodes the testis-specific beta 2-tubulin isoform in Drosophila melanogaster. Mutations responsible for different classes of functional phenotypes are distributed throughout the beta 2-tubulin molecule. There is a telling correlation between the degree of phylogenetic conservation of the altered residues and the number of different microtubule categories disrupted by the lesions. The majority of lesions occur at positions that are evolutionarily highly conserved in all beta-tubulins; these lesions disrupt general functions common to multiple classes of microtubules. However, a single allele B2t6 contains an amino acid substitution within an internal cluster of variable amino acids that has been identified as an isotype-defining domain in vertebrate beta-tubulins. Correspondingly, B2t6 disrupts only a subset of microtubule functions, resulting in misspecification of the morphology of the doublet microtubules of the sperm tail axoneme. We previously demonstrated that beta 3, a developmentally regulated Drosophila beta-tubulin isoform, confers the same restricted morphological phenotype in a dominant way when it is coexpressed in the testis with wild-type beta 2-tubulin. We show here by complementation analysis that beta 3 and the B2t6 product disrupt a common aspect of microtubule assembly. We therefore conclude that the amino acid sequence of the beta 2-tubulin internal variable region is required for generation of correct axoneme morphology but not for general microtubule functions. As we have previously reported, the beta 2-tubulin carboxy terminal isotype-defining domain is required for suprastructural organization of the axoneme. We demonstrate here that the beta 2 variant lacking the carboxy terminus and the B2t6 variant complement each other for mild-to-moderate meiotic defects but do not complement for proper axonemal morphology. Our results are consistent with the hypothesis drawn from comparisons of vertebrate beta-tubulins that the two isotype-defining domains interact in a three-dimensional structure in wild-type beta-tubulins. We propose that the integrity of this structure in the Drosophila testis beta 2-tubulin isoform is required for proper axoneme assembly but not necessarily for general microtubule functions. On the basis of our observations we present a model for regulation of axoneme microtubule morphology as a function of tubulin assembly kinetics.


1987 ◽  
Vol 262 (17) ◽  
pp. 8131-8137 ◽  
Author(s):  
S Miyazawa ◽  
H Hayashi ◽  
M Hijikata ◽  
N Ishii ◽  
S Furuta ◽  
...  

1992 ◽  
Vol 12 (2) ◽  
pp. 598-608
Author(s):  
J D Chen ◽  
C S Chan ◽  
V Pirrotta

The zeste gene product is involved in two types of genetic effects dependent on chromosome pairing: transvection and the zeste-white interaction. Comparison of the predicted amino acid sequence with that of the Drosophila virilis gene shows that several blocks of amino acid sequence have been very highly conserved. One of these regions corresponds to the DNA binding domain. Site-directed mutations in this region indicate that a sequence resembling that of the homeodomain DNA recognition helix is essential for DNA binding activity. The integrity of an amphipathic helical region is also essential for binding activity and is likely to be responsible for dimerization of the DNA binding domain. Another very strongly conserved domain of zeste is the C-terminal region, predicted to form a long helical structure with two sets of heptad repeats that constitute two long hydrophobic ridges at opposite ends and on opposite faces of the helix. We show that this domain is responsible for the extensive aggregation properties of zeste that are required for its role in transvection phenomena. A model is proposed according to which the hydrophobic ridges induce the formation of open-ended coiled-coil structures holding together many hundreds of zeste molecules and possibly anchoring these complexes to other nuclear structures.


2020 ◽  
Author(s):  
Shiwani Limbu

AbstractKinesins of class 13 (kinesin-13s), also known as KinI family proteins, are non-motile microtubule binding kinesin proteins. Mitotic centromere-associated kinesin (MCAK), a member of KinI family protein, diffuses along the microtubule and plays a key role in microtubule depolymerization. Here we have demonstrated the role of evolutionary selection in MCAK protein coding region in regulating its dynamics associated with microtubule binding and stability. Our results indicate that evolutionary selection within MCAK motor domain at amino acid position 440 in carnivora and artiodactyla order results in significant change in the dynamics of α – helix and loop 11, indicating its likely impact on changing the microtubule binding and depolymerization process. Furthermore, evolutionary selections at amino acid position 600, 617 and 698 are likely to affect MCAK stability. A deeper understanding of evolutionary selections in MCAK can reveal the mechanism associated with change in microtubule dynamics within eutherian mammals.


Sign in / Sign up

Export Citation Format

Share Document