embryonic neurons
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 7)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 12726
Author(s):  
Gaspard Gerschenfeld ◽  
Rachida Aid ◽  
Teresa Simon-Yarza ◽  
Soraya Lanouar ◽  
Patrick Charnay ◽  
...  

Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 μg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.


2021 ◽  
Author(s):  
LaFreda J. Howard ◽  
Marie C. Reichert ◽  
Timothy A. Evans

Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. The canonical role of Robo receptors is to signal midline repulsion in response to their cognate Slit ligands, which bind to the N-terminal Ig1 domain in most Robo family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 cooperate to signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. Although it is clear that Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2's other activities are also Slit-dependent. To determine which of Robo2's axon guidance roles depend on its Slit-binding Ig1 domain, we have used a CRISPR/Cas9-based strategy replace the endogenous robo2 gene with a robo2 variant from which the Ig1 domain has been deleted (robo2ΔIg1). We compare the expression and localization of Robo2ΔIg1 protein with that of full-length Robo2 in embryonic neurons in vivo, and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that removal of the Ig1 domain from Robo2ΔIg1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2ΔIg1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.


Author(s):  
Julia Schaeffer ◽  
Celine Tardy ◽  
Floriane Albert ◽  
Stephane Belin ◽  
Homaira Nawabi

ABSTRACTWhen the developing central nervous system (CNS) becomes mature, it loses its ability to regenerate. Therefore, any insult to adult CNS leads to a permanent and irreversible loss of motor and cognitive functions. For a long time, much effort has been deployed to uncover mechanisms of axon regeneration in the CNS. It is now well understood that neurons themselves lose axon regeneration capabilities during development, and also after a lesion or in pathological conditions. Since then, many molecular pathways such as mTOR and JAK/STAT have been associated with axon regeneration. However, no functional recovery has been achieved yet. Today, there is a need not only to identify new molecules implicated in adult CNS axon regeneration, but also to decipher the fine molecular mechanisms associated with regeneration failure. This is critical to make progress in our understanding of neuroprotection and neuroregeneration and for the development of new therapeutic strategies. In this context, it remains particularly challenging to address molecular mechanisms in in vivo models of CNS regeneration. The extensive use of embryonic neurons as in vitro model is a source of bias, as they have the intrinsic competence to grow their axon upon injury, unlike mature neurons. In addition, this type of dissociated neuronal cultures lack a tissue environment to recapitulate properly molecular and cellular events in vitro. Here, we propose to use cultures of adult retina explants to fill this gap. The visual system - which includes the retina and optic nerve - is a gold-standard model to study axon regeneration and degeneration in the mature CNS. Cultures of adult retina explants combine two advantages: they have the simplicity of embryonic neurons cultures and they recapitulate all the aspects of in vivo features in the tissue. Importantly, it is the most appropriate tool to date to isolate molecular and cellular events of axon regeneration and degeneration of the adult CNS in a dish. This ex vivo system allows to set up a large range of experiments to decipher the fine molecular and cellular regulations underlying mature CNS axon growth.


2020 ◽  
Vol 27 (7) ◽  
pp. 2099-2116 ◽  
Author(s):  
Fu-Lei Tang ◽  
Lu Zhao ◽  
Yang Zhao ◽  
Dong Sun ◽  
Xiao-Juan Zhu ◽  
...  

AbstractVps35 (vacuolar protein sorting 35) is a key component of retromer that regulates transmembrane protein trafficking. Dysfunctional Vps35 is a risk factor for neurodegenerative diseases, including Parkinson’s and Alzheimer’s diseases. Vps35 is highly expressed in developing pyramidal neurons, and its physiological role in developing neurons remains to be explored. Here, we provide evidence that Vps35 in embryonic neurons is necessary for axonal and dendritic terminal differentiation. Loss of Vps35 in embryonic neurons results in not only terminal differentiation deficits, but also neurodegenerative pathology, such as cortical brain atrophy and reactive glial responses. The atrophy of neocortex appears to be in association with increases in neuronal death, autophagosome proteins (LC3-II and P62), and neurodegeneration associated proteins (TDP43 and ubiquitin-conjugated proteins). Further studies reveal an increase of retromer cargo protein, sortilin1 (Sort1), in lysosomes of Vps35-KO neurons, and lysosomal dysfunction. Suppression of Sort1 diminishes Vps35-KO-induced dendritic defects. Expression of lysosomal Sort1 recapitulates Vps35-KO-induced phenotypes. Together, these results demonstrate embryonic neuronal Vps35’s function in terminal axonal and dendritic differentiation, reveal an association of terminal differentiation deficit with neurodegenerative pathology, and uncover an important lysosomal contribution to both events.


2019 ◽  
Author(s):  
Stephanie E. Vargas Abonce ◽  
Mélanie Leboeuf ◽  
Alain Prochiantz ◽  
Kenneth L. Moya

ABSTRACTMost homeoprotein transcription factors have a highly conserved internalization domain used in intercellular transfer. Internalization of homeoproteins ENGRAILED1 or ENGRAILED2 promotes the survival of adult dopaminergic cells, whereas that of OTX2 protects adult retinal ganglion cells. Here we characterize the in vitro neuroprotective activity of several homeoproteins in response to H2O2. Protection is observed with ENGRAILED1, ENGRAILED2, OTX2, GBX2 and LHX9 on midbrain and striatal embryonic neurons whereas cell-permeable c-MYC shows no protective effects. Therefore, five homeoproteins belonging to 3 different classes (ANTENNAPEDIA, PAIRED and LIM) share the ability to protect embryonic neurons from midbrain and striatum. Because midbrain and striatal neurons do not express the same repertoire of the 4 proteins, a lack of neuronal specificity together with a general protective activity can be proposed. In contrast, hEN1 and GBX2 exerted no protection on non-neuronal cells including mouse embryo fibroblasts, macrophages or HeLa cells. For the 4 proteins, protection against cell-death correlated with a reduction in the number of H2O2-induced DNA break foci in midbrain and striatal neurons. In conclusion, within the limit of the number of cell types and homeoproteins tested, homeoprotein protection against oxidative stress-induced DNA breaks and death is specific to neurons but shows no homeoprotein or neuronal type specificity.SIGNIFICANCE STATEMENTHomeoproteins are DNA binding proteins regulating gene expression throughout life. Many of them transfer between cells and are thus internalized by live cells. This has allowed for their use as therapeutic proteins in animal models of Parkinson disease and glaucoma. Part of their therapeutic activity is through a protection against neuronal death. Here we show that internalized homeoproteins from three different classes protect embryonic ventral midbrain and striatal neurons from oxidative stress, both at the level of DNA damage and survival. The interest of this finding is that it lends weight to the possibility that many homeoproteins play a role in neuroprotection through shared mechanisms involving, in particular, DNA protection against stress-induced breaks.


2018 ◽  
Vol 11 (2) ◽  
pp. dmm031583 ◽  
Author(s):  
Shelly Sorrells ◽  
Sara Nik ◽  
Mattie Casey ◽  
Rosannah C. Cameron ◽  
Harold Truong ◽  
...  
Keyword(s):  

2018 ◽  
Vol 495 (1) ◽  
pp. 1208-1213 ◽  
Author(s):  
Yongwoo Jang ◽  
Byeongjun Lee ◽  
Eun-Kyung Kim ◽  
Won-Sik Shim ◽  
Young Duk Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document