scholarly journals THE IN VITRO DIFFERENTIATION OF MONONUCLEAR PHAGOCYTES

1966 ◽  
Vol 123 (4) ◽  
pp. 757-766 ◽  
Author(s):  
Zanvil A. Cohn ◽  
Martha E. Fedorko ◽  
James G. Hirsch

A combined morphological, autoradiographic, and cytochemical study at the electron microscope level has been directed towards the formation of electron-opaque granules of cultured macrophages. Labeling of the membrane-bound vesicular structures of pinocytic origin was accomplished with colloidal gold. The initial uptake of gold occurred within micropinocytic vesicles. These electron-lucent vesicles subsequently fused with and discharged their contents into larger pinocytic vacuoles. Colloidal gold was homogeneously distributed in the large pinosomes. In contrast, gold was initially deposited in the periphery of preformed dense granules indicating that these structures were also in constant interaction with the external environment. Colloidal gold was not observed within the cisternae of the endoplasmic reticulum nor within the saccules or vesicles of the Golgi apparatus. There were, however, many small, gold-free vesicles, indistinguishable from Golgi vesicles, which were preferentially aligned about and appeared to fuse with the large pinosomes. The intracellular flow of leucine-H3-labeled protein was followed by electron microscopic autoradiography. After a 15 min pulse of labeled amino acid there was initial labeling of the rough endoplasmic reticulum. Subsequently, much of the label appeared in the Golgi complex. At still later time periods the cytoplasmic dense granules contained the majority of the isotope. Acid phosphatase activity was localized to the dense granules and in the majority of cells to the Golgi apparatus. It is suggested that hydrolytic enzymes are initially synthesized in the endoplasmic reticulum and are then transferred to the Golgi apparatus. Here they are packaged into small Golgi vesicles which represent the primary lysosome of macrophages. The Golgi vesicles subsequently fuse with pinosomes, thereby discharging their hydrolases and forming digestive granules or secondary lysosomes.

Author(s):  
S.R. Allegra

The respective roles of the ribo somes, endoplasmic reticulum, Golgi apparatus and perhaps nucleus in the synthesis and maturation of melanosomes is still the subject of some controversy. While the early melanosomes (premelanosomes) have been frequently demonstrated to originate as Golgi vesicles, it is undeniable that these structures can be formed in cells in which Golgi system is not found. This report was prompted by the findings in an essentially amelanotic human cellular blue nevus (melanocytoma) of two distinct lines of melanocytes one of which was devoid of any trace of Golgi apparatus while the other had normal complement of this organelle.


Author(s):  
Sant S. Sekhon

Although there have been numerous studies concerning the morphogenetic changes accompanying the maturation of insect sperm, only a few deal with the sperm differentiation in the dragonflies. In two recent electron microscopic studies Kessel, has comprehensively treated the erlationship of microtubules to the nucleus and mid-piece structures during spermiogenesis in the dragonfly. The purpose of this study is to follow the sequential nuclear and cytoplasmic changes which accompany the differentiation of spermatogonium into a mature sperm during spermatogenesis in the dragonfly (Aeschna sp.).The dragonfly spermatogonia are characterized by large round nuclei. Loosely organized chromatin is usually unevenly distributed within the spermatogonial nuclei. The scant cytoplasm surrounding the nucleus contains mitochondria, the Golgi apparatus, elements of endoplasmic reticulum and numerous ribosomes (Fig. 1).


1968 ◽  
Vol 16 (4) ◽  
pp. 249-262 ◽  
Author(s):  
ZOLTAN POSALAKI ◽  
DEZSÖ SZABÓ ◽  
ERNÖ BÁCSI ◽  
ISTVÁN ÖKRÖS

The localization of lipids and the activities of nonspecific esterase, aryl sulfatase and acid phosphatase were studied in different stages of spermatogenesis in rats. In addition, the distribution of acid phosphatase activity was demonstrated electron histochemically. The spermatogenetic cycle was divided into two phases—corresponding to the first and the last four stages of Roosen-Runge-Giesel (RG) classification. Spermatids in the first phase contained abundant endoplasmic reticulum with rosette formation and well developed Golgi apparatus with numerous vesicles. They displayed high activity of hydrolytic enzymes but contained no appreciable amount of lipids. The Sertoli cells contained large lipid granules but showed minimal enzyme activity. During the second phase reduction of the cytoplasm of spermatids with fragmentation of the endoplasmic reticulum and Golgi lamellae, accumulation of lipids, aggregation of ribonucleo-protein particles, formation of residual bodies and marked decrease of enzyme activity were seen. The Sertoli cells contained large mitochondria, well developed endoplasmic reticulum and numerous dense bodies and revealed high activities of hydrolytic enzymes and rapid depletion of lipids. These ultrastructural and histochemical findings suggested an interaction between the Sertoli cells and the developing spermatids which probably contributed to the regulation of spermatogenesis.


1962 ◽  
Vol 15 (2) ◽  
pp. 289-312 ◽  
Author(s):  
Edward Essner ◽  
Alex B. Novikoff

The Reuber hepatoma H-35 and Morris hepatoma 5123 have been studied by electron microscopy and by cytochemical staining methods for a number of phosphatases. These studies emphasize the resemblances of the two tumors to rat liver, but they also indicate distinctive features in each of the three tissues. Secretory product accumulates within the cisternae of the Golgi apparatus that dilate to form the Golgi vacuoles. The vacuoles apparently separate, and secretory material undergoes further condensation within them. These "secretory vacuoles" possess acid phosphatase activity and may thus be considered lysosomes. The membranes of the Golgi apparatus are without acid phosphatase activity but show high levels of thiaminepyrophosphatase activity. The endoplasmic reticulum also hydrolyzes thiaminepyrophosphate but at a lower rate; it hydrolyzes the diphosphates of uridine, guanosine, and inosine rapidly. These observations and the electron microscopic images are consistent with the view that the cytomembranes are in a dynamic state of flux, movement, and transformation in the living cell, and that smooth surfaced derivatives of the endoplasmic reticulum become refashioned into the Golgi membranes as the Golgi membranes are being refashioned into those that delimit secretory vacuoles. The variations encountered in the two hepatomas are described. The electron microscope literature dealing with the relations of the Golgi apparatus to secretory granules, on the one hand, and the endoplasmic reticulum, on the other, is reviewed briefly.


1983 ◽  
Vol 31 (9) ◽  
pp. 1077-1088 ◽  
Author(s):  
R D Broadwell ◽  
A M Cataldo

The endoplasmic reticulum (ER) and its contribution to the endomembrane system (i.e., membranes of cell organelles) in the neuron have been investigated in brains of mice by applying electron microscopic enzyme cytochemistry for demonstration of glucose-6-phosphatase (G6Pase) activity. The phosphohydrolytic activity of G6Pase is a well-known cytochemical marker for the ER in numerous cell types. Of the different substrates employed, glucose-6-phosphate and mannose-6-phosphate were the only two with which G6Pase reaction product was seen in the neuronal ER and organelles related morphologically to the ER. G6Pase activity in cell bodies and dendrites was localized consistently within the lumen of the nuclear envelope, rough and smooth ER, lamellar bodies, hypolemmal and subsurface cisternae, and frequently in the cis saccules of the Golgi apparatus. The G6Pase reactive ER appeared as a network of saccules and tubules pervading the cell body and its dendrites. Possible membrane continuities were identified between the ER and the other reactive structures, including the cis half of the Golgi apparatus. Neither G6Pase activity nor reactive ER was associated with the trans Golgi saccules or GERL. G6Pase activity thus serves as a reliable marker for the perikaryal and dendritic ER and related structures. These observations support the theory that the ER is an integral component of the neuronal endomembrane system associated with the transfer of membrane or membrane molecules among intracellular compartments, the packaging and transport of exportable protein, and energy metabolism. G6Pase activity in the ER of axons and terminals is considered in detail in part two of this study.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
L Hille ◽  
T Nuehrenberg ◽  
M Lenz ◽  
A Vlachos ◽  
D Trenk

Abstract Reticulated platelets (RP) are the youngest circulating platelets in blood. Compared to older platelets, RP represent a highly active prothrombotic platelet population associated with an increased risk for cardiovascular events, mortality and impaired response to antiplatelet drugs compared to older platelets (non-RP). The underlying mechanisms for these characteristics of RP are so far poorly understood. This study aimed to characterize ultrastructural properties of RP and non-RP by transmission electron microscopy (TEM) of FACS-sorted human platelets using a novel staining method for RP. Washed platelets from three healthy donors were stained by SYTO™13, a nucleic acid binding fluorescent dye, which enables determination of RP and non-RP based on their RNA-content. 8×106 platelets were fixed, sorted and sandwiched between two layers of agarose gel. Samples were further processed for visualization by TEM. In total, 1047 platelets, i.e., electron micrographs of individual cross-sections, were analysed by an investigator blinded concerning experimental condition. Sizes, numbers of α-granules, dense granules, mitochondria and open canalicular system openings were assessed in RP and non-RP, respectively. Furthermore, platelets were screened for pseudopodia formation as an indicator for activation. Cross-sectional area was significantly different between RP and non-RP (2.44 [1.80–3.22] vs. 1.34 [1.04–1.89] μm2; p<0.0001; median with IQR). α-granule and mitochondria amounts were higher in RP which persisted even after adjustment for platelet size (α-granules: 4.64 [3.46–5.86]/μm2 vs. 4.15 [2.87–5.26]/μm2; p<0.0001; mitochondria: 0.33±0.02 /μm2 vs. 0.12±0.01/μm2; mean ± SEM). In contrast, the amount of open canalicular system openings per square μm was higher in the non-RP group (5.82 [4.34–7.68] /μm2 vs. 5.52 [4.01–7.11] /μm2; p=0.009). Dense granule content per square μm was similar in both RP and non-RP. Pseudopodia were present in 38% (RP) respective 37% (non-RP) of platelets. Notably, golgi apparatus and rough endoplasmic reticulum which are rarely seen in platelets were detected in several RP. Analysis of TEM pictures revealed an almost 2-fold higher cross-sectional area in RP compared to non-RP. Even after adjustment for differences in size, α-granule content remained significantly higher in RP indicating a higher storage pool for prothrombotic constituents like p-selectin or von Willebrand factor. Although the relative amount of dense granules per area did not differ between the two groups, a higher absolute number of dense granules per platelet in the RP group is indicative for higher amounts of stored small molecules such as ADP, calcium or serotonin. Despite the anucleate nature of platelets, the presence of golgi apparatus and rough endoplasmic reticulum suggests the capability of protein biosynthesis in RP. These comprehensive findings provide new important insight into the ultrastructural properties of human RP. Acknowledgement/Funding PharmCompNet Baden-Württemberg: Kompetenznetzwerk Pharmakologie Baden-Württemberg


1972 ◽  
Vol 20 (3) ◽  
pp. 220-224 ◽  
Author(s):  
A. HADDAD

Radioactive galactose was injected intravenously into rats and localized in thyroid follicular cells by electron microscopic radioautography at intervals ranging from 2.5 to 30 min after injection. The galactose label was mostly present in the Golgi apparatus at 2.5 min, with some of it in the adjacent rough endoplasmic reticulum. By 30 min, the label was found in apical vesicles and colloid. It was concluded that galactose is added to the carbohydrate side chains of incomplete thyroglobulin molecules during their travel through the cisternae of the endoplasmic reticulum into the Golgi apparatus; the uptake begins as this organelle is approached, but predominates within it. The thyroglobulin molecule which has thus been labeled is transported by the apical vesicles to the colloid.


1982 ◽  
Vol 58 (1) ◽  
pp. 79-93
Author(s):  
C.J. Flickinger

The synthesis, transport, and disposition of material labelled with [3H]mannose were studied by electron microscopic radioautography in normal amoebae and in cells that had internalized cell surface as a result of being induced to undergo pinocytosis. Control amoebae were injected with the precursor and placed in normal medium. The Golgi apparatus and rough endoplasmic reticulum were heavily labelled at the earliest intervals, while radioactivity of the cell surface peaked 12 h after injection of precursor. The experimental cells were injected, placed in bovine serum albumin solution from 15 to 60 min after injection, and then removed to normal medium until fixation. Incorporation of the precursor into the rough endoplasmic reticulum was near normal, but the proportions of grains associated with the Golgi apparatus and the cell surface were greatly reduced. The percentage of grains overlying vacuoles increased 12 h after injection, notably in the case of polymorphous vacuoles and dense vacuoles, both of which were identified as lysosomes with the acid phosphatase reaction. The results suggest that addition to the surface of components labelled with [3H]mannose was diminished following induction of pinocytosis. Incorporation of the precursor appeared to be shifted from cell surface material to lysosomal contents, possibly lysosomal enzymes. It is thought that this shift occurred in response to the need for the cell to digest unusually large amounts of endocytosed protein. Recycling of cell surface under these conditions is considered possible.


Sign in / Sign up

Export Citation Format

Share Document