scholarly journals GAMMA GLOBULIN AND ANTIBODY FORMATION IN VITRO

1967 ◽  
Vol 125 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Vera J. Stecher ◽  
G. Jeanette Thorbecke

The present studies have shown that the influence of X-irradiation on the secondary antibody response in vitro is remarkably similar to its effect on the primary response in vivo. When sensitized tissue was first irradiated and then reexposed to antigen, the duration of the interval between irradiation and antigen addition determined the degree of inhibition of the secondary response obtained. A delay of 12 hr resulted in stronger inhibition than a delay of 6 hr, and an interval of 24 hr before reexposure to antigen caused complete suppression of antibody production to diphtheria toxoid and almost complete suppression when sheep RBC were used as the antigen. Induction of the secondary response in rabbit lymph node tissue in vitro followed by exposure to X-irradiation, revealed that immediate exposure to irradiation after antigen produced stronger inhibition of the subsequent response than irradiation on days 2–3. Irradiation on day 6 had no detectable effect. The effectiveness of the early radiation is probably due to prevention of the proliferation of the antibody-forming cells. BUDR was found to be effective at similar time periods as X-irradiation, whereas colchicine could still stop antibody formation when added late during the secondary response in vitro. It was noted that lymph nodes from some BSA-sensitized rabbits as late as 18 months after sensitization gave a response indistinguishable from a typical secondary response, even when not reexposed to antigen.

1964 ◽  
Vol 120 (6) ◽  
pp. 987-1005 ◽  
Author(s):  
Donald A. Rowley ◽  
Frank W. Fitch

Passive immunization of rats with homologous anti-sheep erythrocyte serum markedly inhibited the primary antibody response to various doses of sheep erythrocytes. Inhibition was "specific" and apparently produced by either "19S" or "7S" antibody to the antigen. Passive immunization inhibited splenic hyperplasia associated with the primary antibody response. Passive immunization 24 hours after active immunization effectively inhibited the primary antibody response. The markedly suppressive effect of specific antibody on the primary antibody response contrasted sharply with the absence of this effect on the secondary response. Antigen-antibody complexes formed in vitro elicited no measurable primary antibody response but did elicit a high secondary response. Exposure of normal spleen cells to the antibody in vivo or in vitro suppressed their response to the antigen in x-irradiated recipients. In contrast, cells from previously immunized animals transferred to x-irradiated animals produced antibody in the presence of passively given antibody. Thus, "potential antibody-forming cells" from normal animals were unresponsive to the antigen in the presence of specific antibody, while "antibody-forming cells" from previously immunized animals responded to the antigen in the presence of antibody. Presumably, antibody actively produced in small quantities by a few antibody-forming cells might inhibit antibody formation by potential antibody-forming cells. Confirmation of this suggestion was obtained by showing that some animals initially injected with small doses of antigen failed to produce measurable antibody to subsequent injections of larger doses of the antigen. Low doses of antigen capable of inducing unresponsiveness produced no measurable circulating antibody, but these doses did produce increased numbers of plaque-forming (antibody-releasing) cells in spleens of rats. Thus, the formation of specific antibody may provide a homeostatic or "feed-back" mechanism which controls or limits production of specific antibody to the portion of the antibody-forming system previously stimulated by the antigen. This mechanism may account in part for immunological unresponsiveness produced in certain other related experimental systems.


1981 ◽  
Vol 154 (5) ◽  
pp. 1652-1670 ◽  
Author(s):  
LH Glimcher ◽  
DL Longo ◽  
I Green ◽  
RH Schwartz

A system has been described that produces a murine syngeneic mixed lymphocyte response (MLR) comparable in magnitude to an allogeneic MLR. The responder cells in these cultures exhibit the classic immunologic characteristics of both memory and specificity. Studies using radiation-induced bone marrow chimeras of F(1) {arrow} parent type indicated that, similar to many other T cell-mediated immune responses, the response of the T lymphocytes in the syngeneic MLR was major histocompatibility complex-restricted and was determined by the environment in which the T cells matured. Using responder T cells from F(1) {arrow} parent chimeras and stimulator cells from H-2 recombinant strains, it was possible to map the genes involved in the stimulation to the K and/or I regions. In addition, blocking studies with monoclonal anti-Ia antibodies suggested that in the B10.A strain the critical molecules were products of both the I-A(k) and I-E(k) subregions. The issue of whether the syngeneic MLR is directed solely at self I-region antigens or whether the response represents proliferation to an unknown antigen in association with self I-region determinants was also addressed. Secondary syngeneic MLR were successfully performed in normal mouse serum and with stimulator cells prepared in the absence of bovine serum albumin to rule out the possibility that xenogeneic serum antigens were involved in the stimulation. The possibility that the syngeneic MLR might represent a secondary response to environmental antigens was eliminated by using germ- free mice as a source of stimulator cells and by demonstrating that spleen cells from unimmunized, fully allogeneic chimeras (B10.A {arrow} B10) could generate a normal syngeneic MLR even though such chimeras could not be primed to respond to any foreign antigens unless supplemented in vivo with a source of antigen-presenting cells syngeneic to the B10 host. The possibility that the syngeneic MLR was a primary response to a foreign antigen was considered unlikely because by using our culture conditions we could not obtain a primary antigen response or a secondary antigen response after in vitro priming to a variety of potent foreign antigens. Finally, the possibility that the syngeneic MLR represents a response to a variety of minor histocompatibility self antigens in association with self Ia molecules was eliminated by showing that the secondary responses to H-2 compatible, non-H-2 different strain (A/J vs. B10.A and C3H, or BALB/c vs. B10.D2 and DBA/2) were comparable to the secondary responses to syngeneic stimulators. Thus, we conclude that the target antigens in the syngeneic MLR are solely determinants on self Ia molecules, although the functionally equivalent possibility of a single, nonpolymorphic, minor self antigen seen in association with self Ia molecules cannot be excluded.


1971 ◽  
Vol 133 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Gordon N. Radcliffe ◽  
Michael A. Axelrad

The immune responses to sheep erythrocytes of mouse spleen cell suspensions from immune and nonimmune donors were compared in vitro. In vivo immunity was only transiently reflected in vitro, and 8 wk after in vivo immunization the responses of cultures from immunized and nonimmunized mice were virtually identical. There appeared to be two mechanisms for an antibody response to sheep erythrocytes. The first was responsible for the early primary response and is unmodified in the immune animal though contributing little to subsequent in vivo responses due to its suppressibility by specific antibody. The second was expressed in the in vivo secondary response but not on in vitro challenge of spleen cells from mice immunized many weeks previously; spleen cell cultures from such immune mice, freed from the antibody of the in vivo environment, once again demonstrate a pure primary-type response.


2006 ◽  
Vol 203 (9) ◽  
pp. 2135-2143 ◽  
Author(s):  
Martin Prlic ◽  
Gabriela Hernandez-Hoyos ◽  
Michael J. Bevan

CD8+ T cells only require a brief stimulation with antigen in vitro to divide and differentiate into effector and memory cells upon transfer in vivo. The efficiency of clonal expansion and the functional characteristics of memory cells derived from briefly stimulated cells are poorly defined. We developed a system that allowed us to examine programming entirely in vivo. This was achieved by rapidly killing peptide-pulsed DCs carrying a diphtheria toxin receptor transgene with timed injections of diphtheria toxin without altering the course of an accompanying infection. The magnitude of clonal expansion, but not the functionality of the effector cells, correlated directly with the duration of antigen exposure. Furthermore, memory T cells were capable of mounting a secondary response, regardless of the length of antigen encounter during the primary response. These results indicate that the duration of initial antigen encounter influences the magnitude of the primary response, but does not program responsiveness during the secondary challenge.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

2021 ◽  
Vol 66 (2) ◽  
pp. 123-128
Author(s):  
S. Ya. Loginova ◽  
V. N. Shсhukina ◽  
S. V. Savenko ◽  
S. V. Borisevich

Introduction. The pandemic spread of a new coronavirus infection, COVID-19, has caused a global emergency and attracted the attention of public health professionals and the population of all countries. A significant increase in the number of new cases of SARS-CoV-2 infection demonstrates the urgency of finding drugs effective against this pathogen.The aim of this work was to evaluate the in vitro antiviral efficacy of human recombinant alpha-2b interferon (IFN-α2b) against SARS-CoV-2 virus.Material and methods. The experiments had been carried out on Vero Cl008, the continuous line of African green monkey (Chlorocebus sabaeus) kidney cells. The effectiveness of the drugs was assessed by the suppression of viral reproduction in vitro. The biological activity was determined using titration of a virus-containing suspension in a Vero Cl008 cell culture by the formation of negative colonies.Results. The antiviral efficacy of the IFN-α2b-based medications, which have a high safety profile and proven efficacy in the prevention and treatment of influenza and acute respiratory viral infections (ARVI), has been studied against the new pandemic SARS-CoV-2 virus in vitro experiments in Vero C1008 cell culture. IFN-α2b effectively inhibits the reproduction of the virus when applied both 24 hrs before and 2 hrs after infection. In the IFN-α2b concentration range 102–106 IU/ml a complete suppression of the reproduction of the SARS-CoV-2 virus had been demonstrated.Discussion. IFN-α2b demonstrated in vitro high antiviral activity against SARS-CoV-2. In addition, the substance has a high chemotherapeutic index (>1000).Conclusion. Medications for intranasal use based on IFN-α2b have high antiviral activity and are promising drugs for in vivo study in terms of prevention and treatment of COVID-19.


2003 ◽  
Vol 77 (15) ◽  
pp. 8462-8469 ◽  
Author(s):  
A. Barret ◽  
F. Tagliavini ◽  
G. Forloni ◽  
C. Bate ◽  
M. Salmona ◽  
...  

ABSTRACT Based on in vitro observations in scrapie-infected neuroblastoma cells, quinacrine has recently been proposed as a treatment for Creutzfeldt-Jakob disease (CJD), including a new variant CJD which is linked to contamination of food by the bovine spongiform encephalopathy (BSE) agent. The present study investigated possible mechanisms of action of quinacrine on prions. The ability of quinacrine to interact with and to reduce the protease resistance of PrP peptide aggregates and PrPres of human and animal origin were analyzed, together with its ability to inhibit the in vitro conversion of the normal prion protein (PrPc) to the abnormal form (PrPres). Furthermore, the efficiencies of quinacrine and chlorpromazine, another tricyclic compound, were examined in different in vitro models and in an experimental murine model of BSE. Quinacrine efficiently hampered de novo generation of fibrillogenic prion protein and PrPres accumulation in ScN2a cells. However, it was unable to affect the protease resistance of preexisting PrP fibrils and PrPres from brain homogenates, and a “curing” effect was obtained in ScGT1 cells only after lengthy treatment. In vivo, no detectable effect was observed in the animal model used, consistent with other recent studies and preliminary observations in humans. Despite its ability to cross the blood-brain barrier, the use of quinacrine for the treatment of CJD is questionable, at least as a monotherapy. The multistep experimental approach employed here could be used to test new therapeutic regimes before their use in human trials.


1973 ◽  
Vol 137 (2) ◽  
pp. 411-423 ◽  
Author(s):  
John W. Moorhead ◽  
Curla S. Walters ◽  
Henry N. Claman

Both thymus-derived (T) and bone marrow-derived (B) lymphocytes participate in the response to a hapten 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP), coupled to a nonimmunogenic isologous carrier, mouse gamma globulin (MGG). Spleen cells from mice immunized with NIP-MGG show increased DNA synthesis in vitro when cultured with NIP-MGG. The participation of and requirement for T cells in the response was demonstrated by treating the spleen cells with anti-θ serum. This treatment resulted in a 77% inhibition of the antigen response. Furthermore, adoptively transferred normal thymus cells could be specifically "activated" by NIP-MGG in vivo and they responded secondarily to the antigen in vitro. The active participation of B cells in the secondary response was demonstrated by passing the immune spleen cells through a column coated with polyvalent anti-MGG serum. Column filtration reduced the number of NIP-specific plaque-forming cells and NIP-specific rosette-forming cells (both functions of B cells) and produced a 47% inhibition of the NIP-MGG response. The ability of the cells to respond to phytohemagglutinin (PHA) was not affected by column filtration showing that T cells were not being selectively removed. The participation of B cells in the in vitro NIP-MGG response was also shown by treatment of the spleen cells with antiserum specific for MGG and MGG determinants. B cells were removed by treatment with anti-IgM or polyvalent anti-MGG serum plus complement, resulting in a respective 46 and 49% inhibition of the response to NIP-MGG. (Treatment with anti-IgM serum had no effect on T cells.) The contribution of the hapten NIP to stimulation of T cells was investigated using NIP-MGG-activated thymus cells. These activated T cells responded in vitro very well to the NIP-MGG complex but not to the MGG carrier alone demonstrating the requirement of the hapten for T cell stimulation. The response was also partially inhibited (41%) by incubating the activated cells with NIP coupled to a single amino acid (epsilon-aminocaproic acid) before addition of NIP-MGG. These results demonstrated that T cells recognize the hapten NIP when it is coupled to the isologous carrier MGG.


1974 ◽  
Vol 140 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Judith A. Kapp ◽  
Carl W. Pierce ◽  
Stuart Schlossman ◽  
Baruj Benacerraf

In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed.


Sign in / Sign up

Export Citation Format

Share Document