scholarly journals RELATION OF RHEUMATIC-LIKE CARDIAC LESIONS OF THE MOUSE TO LOCALIZATION OF GROUP A STREPTOCOCCAL CELL WALLS

1969 ◽  
Vol 129 (1) ◽  
pp. 37-49 ◽  
Author(s):  
S. H. Ohanian ◽  
J. H. Schwab ◽  
W. J. Cromartie

Mice injected intraperitoneally with isolated cell wall fragments of Group A streptococci develop a carditis similar to that previously observed in mice injected with crude extracts of this organism. Neither the soluble cytoplasmic components of Group A streptococcal cells nor the nonfragmented cell walls produced carditis in this experimental model. Fluorescein and 125I-labeled antibodies specific for Group A streptococcal cell wall antigens were used to demonstrate that, for 5 wk after injection, cell wall material is localized around the sites of active lesions in the heart. In addition, the cell wall antigen accumulates in the liver, spleen, mediastinal lymph nodes, and the adjacent loose connective tissue, where it persists for at least 10 wk.

1968 ◽  
Vol 127 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Vincent A. Fischetti ◽  
John B. Zabriskie

Evidence has been presented that Group C bacteriophages differ as to their inactivating site on the streptococcal cell wall. While all three phages adsorb to isolated cell walls, only the C1 phage was inactivated by enzymatically prepared group-specific carbohydrate. None of the Group C phages were inactivated by chemically extracted group-specific carbohydrate. In contrast, all virulent Group A streptococcal bacteriophages adsorbed only to living Group A streptococci. However, Group A temperate phages were able to adsorb to isolated cell walls but not to group-specific carbohydrate. While it has not been possible to identify the specific inactivating substance for the Group A virulent phages, certain pieces of evidence indirectly implicate the group-specific carbohydrate, specifically the N-acetylglucosamine moiety. The fact that Group A virulent phages failed to adsorb to heat-killed Group A streptococcal cells suggests that additional factors produced by the living cell are needed for complete viral inactivation.


2018 ◽  
Vol 15 (8) ◽  
pp. 513
Author(s):  
Ewen Silvester ◽  
Annaleise R. Klein ◽  
Kerry L. Whitworth ◽  
Ljiljana Puskar ◽  
Mark J. Tobin

Environmental contextSphagnum moss is a widespread species in peatlands globally and responsible for a large fraction of carbon storage in these systems. We used synchrotron infrared microspectroscopy to characterise the acid-base properties of Sphagnum moss and the conditions under which calcium uptake can occur (essential for plant tissue integrity). The work allows a chemical model for Sphagnum distribution in the landscape to be proposed. AbstractSphagnum is one the major moss types responsible for the deposition of organic soils in peatland systems. The cell walls of this moss have a high proportion of carboxylated polysaccharides (polygalacturonic acids), which act as ion exchangers and are likely to be important for the structural integrity of the cell walls. We used synchrotron light source infrared microspectroscopy to characterise the acid-base and calcium complexation properties of the cell walls of Sphagnum cristatum stems, using freshly sectioned tissue confined in a flowing liquid cell with both normal water and D2O media. The Fourier transform infrared spectra of acid and base forms are consistent with those expected for protonated and deprotonated aliphatic carboxylic acids (such as uronic acids). Spectral deconvolution shows that the dominant aliphatic carboxylic groups in this material behave as a monoprotic acid (pKa=4.97–6.04). The cell wall material shows a high affinity for calcium, with a binding constant (K) in the range 103.9–104.7 (1:1 complex). The chemical complexation model developed here allows for the prediction of the chemical environment (e.g. pH, ionic content) under which Ca2+ uptake can occur, and provides an improved understanding for the observed distribution of Sphagnum in the landscape.


1952 ◽  
Vol 96 (6) ◽  
pp. 569-580 ◽  
Author(s):  
Maclyn McCarty

Cell wall preparations of uniform chemical constitution have been obtained from several strains of group A streptococci. The isolated cell walls are dissolved by the same fractions of the Streptomyces albus enzymes that are effective in the lysis of intact cells, and it is likely that enzymatic lysis of group A streptococci is effected by an attack on the cell wall. The streptococcal cell wall, as prepared in this study, consists of approximately two-thirds carbohydrate and one-third protein. Small amounts of other components may be present. The carbohydrate component, which is composed primarily of N-acetyl-glucosamine and rhamnose, is the group-specific C carbohydrate. The evidence indicates that one of the streptomyces enzymes is directed toward the carbohydrate component of the cell wall.


1957 ◽  
Vol 106 (3) ◽  
pp. 365-384 ◽  
Author(s):  
Richard M. Krause

The host ranges of bacteriophages for group A, types 1, 6, 12, and 25 and group C streptococci have been determined. The findings indicate that the susceptibility to these phages is primarily a group-specific phenomenon, although it is modified by several factors such as the hyaluronic acid capsule, lysogeny, and possibly the presence of surface proteins. Phage antibody studies indicate that while the group A phages are antigenically related, they are distinct from the group C phage. This is in agreement with the observation that group A phages are not specific for their homologous streptococcal types. The purified group C carbohydrate inactivates group C phage but not the group A phages, thus suggesting that the carbohydrate, a component of the cell wall, may serve as the phage receptor site. It has not been possible to inactivate the group A phages with group A carbohydrate. Phage lysis of groups A and C streptococci is accompanied by fragmentation of the cell wall since the C carbohydrate has been identified serologically and chemically in the supernate of centrifuged lysates. The immediate lysis of groups A and C hemolytic streptococci and their isolated cell walls by an accesory heat-labile lytic factor in fresh group C lysates is also described.


1959 ◽  
Vol 110 (6) ◽  
pp. 853-874 ◽  
Author(s):  
Earl H. Freimer ◽  
Richard M. Krause ◽  
Maclyn McCarty

L forms of Group A streptococci have been isolated by the use of penicillin gradient agar plates. Osmotically fragile protoplasts of Group A streptococci have been obtained by the use of Group C phage-associated lysin which lyses Group A streptococci and their isolated cell walls. Membranes surrounding these enzymatically derived protoplasts have been isolated, and chemical and immunological studies indicate that they are free of cell wall carbohydrate and M protein. The streptococcal protoplasts reproduce as colonies which are morphologically indistinguishable from streptococcal L forms. Evidence is presented to show that these two streptococcal derivatives are serologically and physiologically related to each other as well as to the parent streptococcal strain from which they were isolated.


1959 ◽  
Vol 5 (6) ◽  
pp. 641-648 ◽  
Author(s):  
R. G. E. Murray ◽  
W. H. Francombe ◽  
B. H. Mayall

Cultures of sensitive stains of Staphylococcus aureus were fixed with osmium tetroxide after 1–5 hours' exposure to various does of pencillin and were embedded in methacrylate for sectioning and electron microscopy. They were compared with untreated, control cultures. The contrast of the cell wall material was untreated, control cultures. The contrast of the cell wall material was increased, by cutting the section of lanthanum nitrate.The cells increased in size and the surrounding cell wall was thinner than normal. The main lesions appeared in the developing cell wall septa, which showed a loss in density and gross irregularity of shape. Some questionable inclusions were seen in the cytoplasm. Lysis was prevented in a medium containing 0.3 M sucrose and the stable spheroplasts retained a recognizable cell wall after 24 hours' exposure to penicillin. However, the septa could not be demonstrated in the cells treated in sucrose medium.Two resistant strains were exposed to penicillin. In one, the cells showed no morphological effects; in the other, there was temporary damage to the cell septa with complete recovery.The observations support the hypothesis that penicillin interferes with the synthesis of a cell wall component and indicate that the main point of cell wall synthesis is at the site of septum formation.


1989 ◽  
Vol 170 (2) ◽  
pp. 369-382 ◽  
Author(s):  
S Q DeJoy ◽  
K M Ferguson ◽  
T M Sapp ◽  
J B Zabriskie ◽  
A L Oronsky ◽  
...  

Primary lymph node cells derived from streptococcal cell wall arthritic rats or those derived from adjuvant arthritic rats proliferated in response to cell wall antigens derived from either streptococcal cell walls or those from M. tuberculosis. In addition, two T cell lines have been isolated from lymph nodes of rats during the chronic phase of streptococcal cell wall arthritis. These T cell lines transfered clinical disease to naive syngeneic irradiated recipients, and they proliferated in the presence of cell wall antigens derived from streptococci or antigens derived from Mycobacterium but failed to proliferate in the presence of the 65-kD antigen (containing the sequence TFGLQLELT) derived from Mycobacterium. These observations indicate that T cells play a crucial role in the pathogenesis of streptococcal cell wall arthritis and suggest that antigenic crossreactivity exists between cell walls of group A streptococci and antigens derived from Mycobacterium. The 65-kD Mycobacterium protein is not involved in the observed antigenic crossreactivity.


1965 ◽  
Vol 122 (5) ◽  
pp. 877-890 ◽  
Author(s):  
Jiri Rotta ◽  
Thomas J. Prendergast ◽  
Walter W. Karakawa ◽  
Charles K. Harmon ◽  
Richard M. Krause

The streptococcal cell wall mucopeptide when injected into mice either intraperitoneally or intravenously enhances the resitance to subsequent challenge with virulent Group A streptococci. Rabbits which are injected intravenously with solubilized mucopeptide develop a fever response which has a resemblance to that achieved with endotoxin. Mice which survive 6 to 7 weeks after challenge with virulent Group A streptococci yield at autopsy search Group A streptococci serologically identical to the challenge organisms. A preparative dose of cell walls injected into mice prior to challenge diminished this late recovery of streptococci. Group A-variant streptococci were recovered from mice which survived challenge and carried the organisms for several weeks. Filterable bacterial forms, which grew on L form media, were recovered from infected mice. The serologic type of the L forms was identical to that of the challenge organisms.


1980 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G. D. Sprott ◽  
R. C. McKellar

Dithiothreitol reacted, at pH 9.0, with the isolated cell walls of Methanospirillum hungatii, to release about 23% of the cell wall dry weight as a high molecular weight fraction (> 0.5 million daltons). Untreated walls consisted of 70% amino acids, 11% lipid, and 6.6% carbohydrate. Sugars were identified as rhamnose, ribose, glucose, galactose, and mannose. The wall material that was released contained only 47% amino acids and was enriched in lipid, glucose, and phosphate. These results support data from electron micrographs, showing the localized release of cell wall material by the disulfide bond-breaking reagent at alkaline pH. In amino acid composition the untreated walls did not differ greatly from the material released by dithiothreitol, but differed considerably from the walls of another strain of M. hungatii. The ratios of the amino acids found in the cell wall proteins of several archaebacteria and of Bacillus cereus spore coats were similar.


1998 ◽  
Vol 1998 ◽  
pp. 71-71
Author(s):  
H. van Laar ◽  
S. Tamminga ◽  
B.A. Williams ◽  
B. Diekema ◽  
W. Burgers ◽  
...  

When analysing the fermentative breakdown of cell wall material in plants it is important to realize that it is not homogeneous. The cell walls are composed of different cell wall types which can differ in both their breakdown characteristics and composition. In this experiment in vitro cumulative gas production (Theodorou et al., 1994) was measured to study breakdown characteristics of cell walls from hulls and endosperm of soya beans.


Sign in / Sign up

Export Citation Format

Share Document