high molecular weight fraction
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
E. D. Lodygin ◽  
R. S. Vasilevich

Purpose of the study: to reveal the influence of hydromorphism and agricultural use on the molecular-mass distribution (MMD) of humic (HAs) and fulvic acids (FAs) isolated from the soils of the European northeast of Russia. To assess the influence of the acidity of the medium on the MWD of FAs. Place and time of the event. The studies were carried out on the territory of the middle taiga (Maksimovsky station of the Institute of Biology of the Federal Research Center of the KSC UB RAS, located 8 km west of the city of Syktyvkar and the field of the Syktyvkar state farm, 5 km south-west of Syktyvkar, on the watershed of the Sysola and Vazhel-yu rivers) and northern taiga (3 km west of the Troitsko-Pechorsk station). The objects of the study were humic substances isolated from typical podzolic (Eutric Albic Retisol (Loamic)), gleypodzolic (Eutric Albic Stagnic Retisol (Loamic)), peaty-podzolic surface-gleyed (Eutric Albic Stagnic Histic) Retisol (Loamic Eutric Albic Retisol (Loamic)) soils. The soil sampling period is from 1 to 30 August 2014. Methodology. Quantitative analysis of the MMD of HA and FA preparations was performed using liquid size exclusion chromatography (gel chromatography) on Sephadex G-25 and G-100 gels with continuous automatic registration of the optical density of the eluate (λ = 280 nm) in a quartz flow cell, K 9 × 60 cm column (Pharmacia, Sweden). Distilled water, 0.05 M NaOH solution, and Tris-HCl buffer with pH = 8.2 were used as the eluent. Main results. Studies of the MMD of humic substances have been carried out. It was found that HAs contain three fractions with different molecular weights: ≥ 150 kDa, 73–80 kDa, and 13–23 kDa; FAs – two fractions: ≥ 5 kDa, 1–2 kDa. The low molecular weight of FAs, together with a large amount of oxygen-containing functional groups, contributes to their better solubility and migration ability in soils. The HAs of automorphic soils are characterized by a high content of low molecular weight fractions, and the proportion of the high molecular weight fraction in the HAs of the litter is 1.5–2.0 times higher than in the HAs of the podzolic horizon, which may be due to the migration of the low molecular weight fraction down the profile. The high proportion of the acidic low molecular weight fraction in the podzolic horizon promotes the decomposition of soil minerals and their leaching into the illuvial horizon. The influence of agricultural use of soils on the fractional composition of humic compounds is estimated. A sharp increase in the share of the high molecular weight fraction in the preparations of HAs of arable podzolic soil by 2–4 times compared with the HAs of virgin podzolic soils was noted, which is due to the cultivation of the arable horizon, the nature of the incoming plant residues and the increased microbiological activity of the developed soils. The effect of acidity of the medium on the character of chromatograms of FA preparations isolated from the main types of soils of the Komi Republic was studied. It has been shown that in the region of high pH values of the eluent 9–13, the absence of fractionation is associated with the association of FAs, a change in their conformation, and the effect of “over-exclusion”. Elution with distilled water (pH = 6.5) allows the separation of FAs into two fractions with molecular weights ≥ 5 kDa and 1–2 kDa.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Lester Anderson ◽  
Evan Yu ◽  
Wan-Ting Chen

Currently, less than 20% of electronic waste (E-waste) produced in the U.S. is recycled. To improve the recycling rate of E-waste, the study aimed to: (1) identify the major plastics found within electronic shredder residue (ESR), (2) design solvents and processing conditions capable of separating out 90% of the plastic in ESR, and (3) estimate the energy efficiency of the solvent-based process developed. Preliminary screening showed 25 wt.% of the ESR was composed of plastics, with two polymers dominating the sorted plastic fraction—polystyrene (PS, 40 wt.%) and acrylonitrile butadiene styrene (ABS, 25 wt.%). Subsequently, solvents and anti-solvents were screened using Hansen Solubility Parameter Theory for PS, ABS, and ESR dissolution. The pre-screening results showed dichloromethane (DCM) and tetrahydrofuran (THF) as the most effective solvents for PS and ABS, with methanol (MeOH) and ethylene glycol (EG) as the most effective anti-solvents. By optimizing the dissolution time and the solvents used, the highest polymer dissolution yield (99 wt.%) was achieved using DCM for 48 h. Both MeOH and EG precipitated 71 wt.% of the polymer fraction of ESR. EG removed more phosphorus containing flame retardants (94 wt.%) than MeOH (69 wt.%). Energy analysis indicated that the solvent-based processes could save 25–60% of the embodied energy for PS and ABS. Characterization showed that the solvent-based processing could preserve the high molecular weight fraction of the polymers while removing flame retardants at the same time. The results from this study prove the potential of solvent-based processing to produce secondary plastic materials from E-waste for cross-industry reuse.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas W. Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2571
Author(s):  
Aleksandr S. Kazachenko ◽  
Natalya Yu. Vasilieva ◽  
Valentina S. Borovkova ◽  
Olga Yu. Fetisova ◽  
Noureddine Issaoui ◽  
...  

Xanthan is an important polysaccharide with many beneficial properties. Sulfated xanthan derivatives have anticoagulant and antithrombotic activity. This work proposes a new method for the synthesis of xanthan sulfates using sulfamic acid. Various N-substituted ureas have been investigated as process activators. It was found that urea has the greatest activating ability. BBD of xanthan sulfation process with sulfamic acid in 1,4-dioxane has been carried out. It was shown that the optimal conditions for the sulfation of xanthan (13.1 wt% sulfur content) are: the amount of sulfating complex per 1 g of xanthan is 3.5 mmol, temperature 90 °C, duration 2.3 h. Sulfated xanthan with the maximum sulfur content was analyzed by physicochemical methods. Thus, in the FTIR spectrum of xanthan sulfate, in comparison with the initial xanthanum, absorption bands appear at 1247 cm−1, which corresponds to the vibrations of the sulfate group. It was shown by GPC chromatography that the starting xanthan gum has a bimodal molecular weight distribution of particles, including a high molecular weight fraction with Mw > 1000 kDa and an LMW fraction with Mw < 600 kDa. It was found that the Mw of sulfated xanthan gum has a lower value (~612 kDa) in comparison with the original xanthan gum, and a narrower molecular weight distribution and is characterized by lower PD values. It was shown by thermal analysis that the main decomposition of xanthan sulfate, in contrast to the initial xanthan, occurs in two stages. The DTG curve has two pronounced peaks, with maxima at 226 and 286 °C.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1323
Author(s):  
Aparecida Cristina Mauro ◽  
Bernardo Dias Ribeiro ◽  
Rafael Garrett ◽  
Ricardo Moreira Borges ◽  
Talis Uelisson da Silva ◽  
...  

The aqueous extract of Joazeiro stem bark (EJSB) and its high molecular weight fraction (HMWF) were examined as potential corrosion inhibitors of mild steel in 1 mol L−1 hydrochloric acid media, using weight-loss measurements, potentiodynamic polarization curves and an electrochemical impedance spectroscopy (EIS).Varying the concentration of the inhibitors from 100 to 800 mg L−1, the results show an increase in anticorrosive efficiency from 85.4 to 89.8 and 89.8 to 93.0% for EJSB and its HMWF, respectively, using the data of the gravimetric essay, and from 84.5 to 94.5 and 89.9 to 94.7% for EJSB and its HMWF, respectively, from the impedance data. The composition of the crude extract was chemically characterized by liquid chromatography-high resolution mass spectrometry. Additionally, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used, respectively, to morphologically and chemically characterize the surface. Considering that the saponin molecules, the main constituent from juá, are responsible for its inhibitory action, quantum chemical calculations showed that the C67, C69 and O144 atoms likely have an important role in the process of electron-donation of saponin to metal, due to the higher values of ƒk+ and %HOMO observed on these atoms.


2021 ◽  
Author(s):  
Stefanie Ranf ◽  
Lin-Jie Shu ◽  
Milena Schaeffer ◽  
Sabine Eschrig

Background: Plant cell-surface receptors sense various ligands to regulate physiological processes. Matching ligand-receptor pairs requires evidence of their direct interaction and is often a bottleneck in functional receptor studies. The S-domain-type (SD) pattern recognition receptor LORE senses medium chain-3-hydroxy fatty acids (mc-3-OH-FAs) such as 3-hydroxy decanoic acid (3-OH-C10:0) via its extracellular domain (ECD) They are perceived as signals of danger from Gram-negative bacteria and activate immune responses in Arabidopsis thaliana. LORE is found in low levels in planta and is poorly expressed in heterologous systems. Furthermore, chemical modifications of the mc-3-OH-FA ligand affect its biological activity. Taken together, this makes LORE-mc-3-OH-FA binding studies particularly challenging. Results: To investigate the LORE-mc-3-OH-FA interaction, we have developed a sensitive assay system based on protein expression in planta. The ECDs of LORE and other proteins of interest were transiently expressed as soluble, apoplastic mCherry fusion proteins in Nicotiana benthamiana and collected in apoplastic washing fluids. Protein-ligand complexes and unbound ligand were separated according to their molecular weight. In a two-step procedure, we first investigated whether the ECD-mCherry fusion protein depletes 3-OH-C10:0 from the low molecular weight fraction (step 'depletion'). Subsequently, protein-bound 3-OH-C10:0 retained in the high molecular weight fraction in the depletion step is released and detected (step 'binding'). Both the unbound and the released 3-OH-C10:0 ligand are detected by a sensitive bioassay using LORE loss- and gain-of-function Arabidopsis plants. Using the depletion-binding assay, we show that the ECD of AtLORE and its ortholog from Capsella rubella, CrubLORE, bind 3-OH-C10:0. The ECD of AtSD1-23, the closest paralog of AtLORE, and mCherry did not bind 3-OH-C10:0 and are suitable negative controls. Conclusion: The depletion-binding assay is a simple method for reliably detecting interactions between plant-expressed SD-type receptor ectodomains and mc-3-OH-FAs. It does not require special equipment or expensive consumables and is suitable for medium throughput screening. The assay is very flexible and can be easily adapted to investigate ligand interactions of other extracellular receptor domains.


Author(s):  
Jiachang Pi ◽  
Guangcan Zhu ◽  
Lianqing Liu ◽  
Chuya Wang ◽  
Zhonglian Yang

Abstract Controlling the formation of disinfection by-products (DBPs) is a major issue in the drinking water industry, and understanding the characteristics of DBP precursors in treatment processes for micro-polluted raw water is key to improving water quality. In this study, a sampling program was undertaken to investigate the fate of dissolved organic matter (DOM) and the characteristics of DBP precursors in a pilot constructed wetland imitating the Yanlong Lake ecological project. Using XAD resin adsorption and ultrafiltration techniques, the dissolved organic carbon, UV254, and DBP formation potential (DBPFP) were measured in different DOM fractions in raw water and wetland effluents. After the constructed wetland treatment, the low molecular weight fraction (&lt;3 kDa) of DOM and DBPFP generally showed a decreasing trend along the water path, while the high molecular weight fraction (&gt;3 kDa) of DOM increased. The specific DBPFP (SDBPFP) was much higher in the &lt;1 kDa fraction than in the other fractions. Although the hydrophobic fraction of DOM was the most abundant in all stages of the wetland treatment, the SDBPFP of the hydrophilic fraction was higher than that of the hydrophobic fraction. Furthermore, compared with raw water, the DOC, UV254 and DBPFP in the treated wetland effluents increased; however, all of the chemical DOM fractions exhibited decreased SDBPFP in accordance with a decrease in the specific ultraviolet absorbance during wetland treatment. These conclusions indicate that the DOM produced by the wetland system may generate DBPs less readily compared with the DOM of raw water.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Xu ◽  
Koshi Asai ◽  
Daiki Kato ◽  
Kan’ichiro Ishiuchi ◽  
Kewen Ding ◽  
...  

Abstract We have previously discovered that heated honey but not unheated honey could induce the secretion of granulocyte-colony stimulating factor (G-CSF) in the MCE301 intestinal epithelial cells. The objective of this study was to identify compounds in honey that could contribute to this activity. We bought several kinds of commercial honey samples derived from different flowers, as well as corn syrup samples, in the markets of China and Japan, and heated them at 180 °C for 30 min. MCE301 cells were treated with the medium containing the samples, and G-CSF levels in the medium were measured by ELISA. By comparing their activities and sugar contents, we discovered that isomaltose was primarily implicated. The optimum heating conditions for isomaltose were at 180 °C for 60 min or at 200 °C for 15–30 min, and these time- and temperature-dependencies were similar to those of honey in our previous study. When heated isomaltose was partitioned by dialysis, the active ingredients were transferred into a high-molecular-weight fraction. By size-exclusion HPLC analysis, the average molecular weight of heated isomaltose was 790 kDa. When heated isomaltose was hydrolyzed by acids, glucose was subsequently produced. Maltose, sucrose, turanose, and trehalose did not exhibited any activity when heated at 180 °C for 60 min, indicating that the glucose groups with α(1 → 6)-binding in the isomaltose molecule play important roles in its activity when oxidatively polymerized by heat. The stimulating activity of heated isomaltose was inhibited by toll-like receptor 4 (TLR4) inhibitor, suggesting that heated isomaltose activates TLR4 to induce G-CSF. Since G-CSF is clinically used for cancer patients to accelerate their recovery from neutropenia following chemotherapy or accompanied with aplastic anemia, these findings indicate that honey which contains high level of isomaltose could improve immunosuppressive conditions when honey is heated, and that heated isomaltose might be of potential therapeutic use in patients with compromised immunity caused by chemotherapeutic agents.


mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Lauren E. Manck ◽  
Josh L. Espinoza ◽  
Christopher L. Dupont ◽  
Katherine A. Barbeau

ABSTRACT Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes of a representative marine copiotroph, Alteromonas macleodii ATCC 27126, and characterize its cellular transport mechanisms. ATCC 27126 has distinct metabolic responses to iron and carbon limitation and, accordingly, uses distinct sets of TonB-dependent transporters for the acquisition of iron and carbon. These distinct sets of TonB-dependent transporters were of a similar number, indicating that the diversity of carbon and iron substrates available to ATCC 27126 is of a similar scale. For the first time in a marine bacterium, we have also identified six characteristic inner membrane permeases for the transport of siderophores via an ATPase-independent mechanism. An examination of the distribution of specific TonB-dependent transporters in 31 genomes across the genus Alteromonas points to niche specialization in transport capacity, particularly for iron. We conclude that the substrate-specific bioavailability of both iron and carbon in the marine environment will likely be a key control on the processing of organic matter through the microbial loop. IMPORTANCE As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus Alteromonas. We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter.


Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of carbohydrate polymers, nucleic acids and proteins. Carbohydrates within P. aeruginosa biofilms include neutral and mannose-rich Psl, and cationic Pel composed of N-acetyl-galactosamine and N-acetyl-glucosamine. Here we show that P. aeruginosa biofilms display ligands for the C-type lectin receptors mannose receptor (MR, CD206) and Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209). Binding of MR and DC-SIGN to P. aeruginosa biofilms is carbohydrate-and calcium-dependent and extends to biofilms formed by clinical isolates. Confocal analysis of P. aeruginosa biofilms shows abundant DC-SIGN ligands among bacteria aggregates while MR ligands concentrate into discrete clusters. DC-SIGN ligands are also detected in planktonic P. aeruginosa cultures and depend on the presence of the common polysaccharide antigen. Carbohydrates purified from P. aeruginosa biofilms are recognised by DC-SIGN and MR; both receptors preferentially bind the high molecular weight fraction (HMW; >132,000Da) with KDs in the nM range. HMW preparations contain 74.9-80.9% mannose, display α-mannan segments and alter the morphology of human dendritic cells without causing obvious changes in cytokine responses. Finally, HMW interferes with the endocytic activity of cell-associated MR and DC-SIGN. This work identifies MR and DC-SIGN as receptors for bacterial biofilms and highlights the potential for biofilm-associated carbohydrates as immunomodulators through engagement of C-type lectin receptors.Author SummarySelective engagement of pattern recognition receptors during infection guides the decision-making process during induction of immune responses. This work identifies mannose-rich carbohydrates within bacterial biofilms as novel molecular patterns associated with bacterial infections. P. aeruginosa biofilms and biofilm-derived carbohydrates bind two important lectin receptors, MR (CD206) and DC-SIGN (CD209), involved in recognition of self and immune evasion. Abundance of MR and DC-SIGN ligands in the context of P. aeruginosa biofilms could impact immune responses and promote chronic infection.


Sign in / Sign up

Export Citation Format

Share Document