scholarly journals Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells.

1987 ◽  
Vol 166 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A Bendelac ◽  
C Carnaud ◽  
C Boitard ◽  
J F Bach

We have developed a model of syngeneic adoptive transfer for type I diabetes mellitus of NOD mice. This model consists in injecting spleen cells from diabetic adult mice into newborn NOD recipients. 50% of recipients inoculated with 20 X 10(6) cells develop diabetes within the first 10 wk of life, at a time when none of the control littermates have yet become diabetic. The earliest successful transfers are observed at 3 wk of age, at a time when controls do not even exhibit histological changes in their pancreas. In addition we have shown that: (a) both males and females can be adoptively transferred, despite the fact that males rarely develop spontaneous diabetes in our colony; (b) diabetes transfer is a dose-dependent phenomenon that provides an in vivo assay for comparing the autoimmune potential of spleen cells from mice at various stages of their natural history; (c) the susceptibility of the recipients to the transfer is limited in time and declines after 3 wk; and (d) both L3T4+ and Lyt-2+ T cell subsets are necessary for the successful transfer. The neonatal syngeneic transfer provides an effective model for studies of the cellular events involved at regulatory and effector stages of autoimmune type I diabetes.

2008 ◽  
Vol 198 (3) ◽  
pp. 581-589 ◽  
Author(s):  
Jon G Mabley ◽  
Pal Pacher ◽  
Kanneganti G K Murthy ◽  
William Williams ◽  
Garry J Southan ◽  
...  

Endogenous purines including inosine have been shown to exert immunomodulatory and anti-inflammatory effects in a variety of disease models. The dosage of inosine required for protection is very high because of the rapid metabolism of inosine in vivo. The aim of this study was to determine whether a metabolic-resistant purine analogue, INO-2002, exerts anti-inflammatory effects in two animal models of type I diabetes. Type I diabetes was induced chemically with streptozotocin or genetically using the non-obese diabetic (NOD) female mouse model. Mice were treated with INO-2002 or inosine as required at 30, 100, or 200 mg/kg per day, while blood glucose and diabetes incidence were monitored. The effect of INO-2002 on the pancreatic cytokine profile was also determined. INO-2002 reduced both the hyperglycaemia and incidence of diabetes in both streptozotocin-induced and spontaneous diabetes in NOD mice. INO-2002 proved to be more effective in protecting against diabetes than the naturally occurring purine, inosine, when administered at the same dose. INO-2002 treatment decreased pancreatic levels of interleukin (IL)-12 and tumour necrosis factor-α, while increasing levels of IL-4 and IL-10. INO-2002 also reduced pancreatic levels of the chemokine MIP-1α. The inosine analogue, INO-2002, was protected more effectively than the naturally occurring purine, inosine, against development of diabetes in two separate animal models. INO-2002 exerts protective effects by changing the pancreatic cytokine expression from a destructive Th1 to a protective Th2 profile. The use of analogues of inosine such as INO-2002 should be considered as a potential preventative therapy in individuals susceptible to developing type I diabetes.


1993 ◽  
Vol 178 (3) ◽  
pp. 793-803 ◽  
Author(s):  
P L Podolin ◽  
A Pressey ◽  
N H DeLarato ◽  
P A Fischer ◽  
L B Peterson ◽  
...  

The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC-linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow-derived cells, is not sufficient to provide protection from diabetes.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


1997 ◽  
Vol 186 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Syamasundar V. Pakala ◽  
Michael O. Kurrer ◽  
Jonathan D. Katz

Autoimmune diabetes is caused by the CD4+, T helper 1 (Th1) cell-mediated apoptosis of insulin-producing β cells. We have previously shown that Th2 T cells bearing the same T cell receptor (TCR) as the diabetogenic Th1 T cells invade islets in neonatal nonobese diabetic (NOD) mice but fail to cause disease. Moreover, when mixed in excess and cotransferred with Th1 T cells, Th2 T cells could not protect NOD neonates from Th1-mediated diabetes. We have now found, to our great surprise, the same Th2 T cells that produced a harmless insulitis in neonatal NOD mice produced intense and generalized pancreatitis and insulitis associated with islet cell necrosis, abscess formation, and subsequent diabetes when transferred into immunocompromised NOD.scid mice. These lesions resembled allergic inflamation and contained a large eosinophilic infiltrate. Moreover, the Th2-mediated destruction of islet cells was mediated by local interleukin-10 (IL-10) production but not by IL-4. These findings indicate that under certain conditions Th2 T cells may not produce a benign or protective insulitis but rather acute pathology and disease. Additionally, these results lead us to question the feasibility of Th2-based therapy in type I diabetes, especially in immunosuppressed recipients of islet cell transplants.


1994 ◽  
Vol 131 (4) ◽  
pp. 431-437 ◽  
Author(s):  
Alberto Signore ◽  
Marco Chianelli ◽  
Elisabetta Ferretti ◽  
Anna Toscano ◽  
Keith E Britton ◽  
...  

Signore A, Chianelli M, Ferretti E, Toscano A, Britton KE, Andreani D, Gale EAM, Pozzilli P. New approach for in vivo detection of insulitis in type I diabetes: activated lymphocyte targeting with 123I-labelled interleukin 2. Eur J Endocrinol 1994;131:431–7. ISSN 0804–4643 Insulitis is considered the histopathological hallmark of type I (insulin-dependent) diabetes. In the nonobese diabetic (NOD) mouse, diabetes has never been observed in the absence of insulitis. The in vivo detection of insulitis could be of relevance for early prediction of diabetes. As approximately 15% of islet-infiltrating lymphocytes express interleukin 2 receptors, we have labelled recombinant interleukin 2 with 123I and used this radiopharmaceutical to detect insulitis by gamma camera imaging. We studied 71 prediabetic NOD and 27 normal Balb/c mice. Labelled α-lactalbumin was used as the control protein. In the first set of experiments we studied the tissue distribution of radiolabelled interleukin 2 in isolated organs from animals sacrificed at different time points. Higher radioactivity was detected in the pancreas of NOD mice injected with labelled interleukin 2, as compared to NOD mice receiving labelled α-lactalbumin (p < 0.003 at 20 min; p< 0.001 at 40 min; p< 0.0001 at 60 min) or Balb/c mice injected with labelled interleukin 2 (p< 0.05 at 40 min; p< 0.001 at 60 min). In another set of experiments, gamma camera images have been acquired after injection of 123I-labelled interleukin 2. Radioactivity in the pancreatic region of prediabetic NOD and Balb/c mice showed similar kinetics to those observed by single organ counting, with higher accumulation in the pancreatic region of NOD mice (p < 0.04 after 22–45 min in NOD mice vs Balb/c mice). Finally, a positive correlation was found between the radioactivity in the pancreas and the extent of lymphocytic infiltration (p < 0.01 for pancreas radioactivity counted in vitro and p< 0.004 for pancreas radioactivity counted in vivo by gamma camera). This study demonstrates that 123I-labelled interleukin 2 administered iv accumulates specifically in the inflamed pancreas of diabetes-prone NOD mice, suggesting its potential application in human insulin-dependent diabetes mellitus. A Signore, Servizio Speciale di Medicina Nucleare, II Clinica Medica, Policlinico Umberto I, 00161 Roma, Italy


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2676-2676
Author(s):  
Paula M. Chilton ◽  
Francine Rezzoug ◽  
Janina Ratajczak ◽  
Mariusz Ratajczak ◽  
Yiming Huang ◽  
...  

Abstract Multiple hematopoietic defects have been defined in NOD mice and in humans with type I diabetes, including defects in myeloid cells and antigen presenting cells that correlate with diabetes progression. Since the replacement of HSC in NOD mice can eliminate the progression of autoimmunity and control on-going autoimmune responses, we characterized the function of HSC from NOD mice. We found that purified HSC from NOD mice have an autonomous behavior when transplanted in allogeneic recipient strains as reflected by significantly enhanced engraftment in allogeneic recipients. NOD HSC were able to compete for engraftment with syngeneic HSC even when the NOD and syngeneic HSC were given at a 1:1 ratio. NOD BMC produced a higher number of splenic colonies compared to B10.BR BMC in the allogeneic day 12 CFU-S assay. We also demonstrated that NOD HSC had a high resistance to irradiation, as reflected by the cell survival 20 hours after irradiation and in the in vitro CFC assay. These data suggest that NOD HSC escape alloreactivity and compete with normal HSC. The enhanced engraftment ability in allogeneic recipients of NOD HSC was not due to an increase in frequency of primitive HSC, enumerated by day 35 cobblestone area forming cells (CAFC). This finding was further confirmed by the fact that there was no difference in the long-term repopulating cell phenotype (CD49e+/CD49ddim) between HSC obtained from NOD, B10.BR or C57BL/10 mice. Notably, NOD bone marrow cells exhibit significantly enhanced chemotaxis to SDF-1 in vitro and significantly increased HSC adhesion to primary stroma. This was associated with an increase in the expression of VCAM-1, ICAM-1 and ICAM-2 on NOD HSC. Using NOD mice congenic at selected Idd loci with C57BL/10, we determined that the enhanced engraftment potential of NOD HSC mapped to the Idd9 (insulin-dependent diabetes) locus and, as such, the TNF receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSC. In conclusion, NOD HSC exhibit increased autonomy in vivo and in vitro compared to non-diabetic strains, and engraft better in allogeneic recipients, possibly due to enhanced migration and adherence to the microenvironment. This finding may be of interest for a better understanding of disease pathogenesis and in developing cell-based strategies to cure diabetes.


1984 ◽  
Vol 159 (6) ◽  
pp. 1629-1636 ◽  
Author(s):  
R A Jackson ◽  
J B Buse ◽  
R Rifai ◽  
D Pelletier ◽  
E L Milford ◽  
...  

The BB rat develops a syndrome of autoimmune diabetes similar to Type I diabetes of man. It also has a severe T cell lymphopenia. As part of an ongoing breeding program to transfer the diabetogenic genes of the BB rat onto inbred rat strain backgrounds, diabetic animals were used in a backcross (BC)- intercross (IC)-backcross breeding scheme with Brown Norway (BN), Lewis (L), and Wistar-Furth (WF) inbred rats. We have used monoclonal antibodies to analyze both lymphopenia and major histocompatibility (MHC) antigens (the RT1 locus in the rat) in relation to the development of diabetes. To examine T cell subsets we used a panel of monoclonal antibodies, in particular W3/25 and OX19 , which discriminate the abnormal phenotype better than W3/13. In our breeding program, at least two independent genes or gene complexes are required for the expression of diabetes. One gene determines the lymphopenia, is inherited by simple autosomal recessive genetics and is not linked to the MHC. The second gene is linked to the MHC. Both genes are necessary, but neither gene is sufficient by itself for the development of diabetes.


2021 ◽  
Author(s):  
Ariel Galindo-Albarrán ◽  
Sarah Castan ◽  
Jérémy C. Santamaria ◽  
Olivier P. Joffre ◽  
Bart Haegeman ◽  
...  

Regulatory T lymphocytes expressing the forkhead/winged helix transcription factor Foxp3 (Treg) play a vital role in the protection of the organism from autoimmune disease and other immunopathologies. The antigen-specificity of Treg plays an important role in their <i>in vivo</i> activity. We therefore assessed the diversity of the T cell receptors for antigen (TCR) expressed by Treg newly developed in the thymus of autoimmune type I diabetes-prone NOD mice and compared it to the control mouse strain C57BL/6. Our results demonstrate that usage of the TCRa and TCRb variable (V) and joining (J) segments, length of the complementarity determining region (CDR) 3, and the diversity of the TCRa and TCRb chains are comparable between NOD and C57BL/6 mice. Genetic defects affecting the diversity of the TCR expressed by newly developed Treg therefore do not appear to be involved in the etiology of type I diabetes in the NOD mouse.


1991 ◽  
Vol 174 (3) ◽  
pp. 633-638 ◽  
Author(s):  
J A Shizuru ◽  
C Taylor-Edwards ◽  
A Livingstone ◽  
C G Fathman

It has been demonstrated, in certain autoimmune disease models, that pathogenic T cells express antigen receptors of limited diversity. It has been suggested that the T cells responsible for the pathogenesis of type I diabetes mellitus might similarly demonstrate restricted T cell receptor (TCR) usage. Recently, attempts have been made to identify the V beta subset(s) that initiates and/or perpetuates the antiislet response in a mouse model of spontaneous autoimmune diabetes (non-obese diabetic [NOD] mice). In studies reported here, we have bred NOD mice to a mouse strain that congenitally lacks approximately one-half of the conventional TCR V beta alleles. Included in this deletion are TCR V beta gene products previously implicated as being involved in the pathogenesis of NOD disease. By studying second backcross-intercross animals, we were able to demonstrate that this deletion of TCR V beta gene segments did not prevent the development of insulitis or diabetes.


1989 ◽  
Vol 169 (5) ◽  
pp. 1669-1680 ◽  
Author(s):  
C Boitard ◽  
R Yasunami ◽  
M Dardenne ◽  
J F Bach

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice.


Sign in / Sign up

Export Citation Format

Share Document