scholarly journals Calcium ionophore synergizes with bacterial lipopolysaccharides in activating macrophage arachidonic acid metabolism.

1988 ◽  
Vol 167 (2) ◽  
pp. 623-631 ◽  
Author(s):  
A A Aderem ◽  
Z A Cohn

LPS, a major component of Gram-negative bacterial cell walls, prime macrophages for greatly enhanced arachidonic acid [20:4] metabolism when the cells are subsequently stimulated. The LPS-primed macrophage has been used as a model system in which to study the role of Ca2+ in the regulation of 20:4 metabolism. The Ca2+ ionophore A23187 (0.1 microM) triggered the rapid release of 20:4 metabolites from LPS-primed macrophages but not from cells not previously exposed to LPS. Macrophages required exposure to LPS for at least 40 min before A23187 became effective as a trigger. A23187 (0.1 microM) also synergized with PMA in activating macrophage 20:4 metabolism. The PMA effect could be distinguished from that of LPS since no preincubation with PMA was required. A23187 greatly increased the amount of lipoxygenase products secreted from LPS-primed macrophages, leukotriene C4 synthesis being increased 150-fold. LPS-primed macrophages, partially permeabilized to Ca2+ with A23187, were used to titrate the Ca2+ concentration dependence of the cyclooxygenase and lipoxygenase pathways. Cyclooxygenase metabolites were detected at an order of magnitude lower Ca2+ concentration than were lipoxygenase products. The data suggest that Ca2+ regulates macrophage 20:4 metabolism at two distinct steps: an increase in intracellular Ca2+ regulates the triggering signal and relatively higher Ca2+ concentrations are required for 5-lipoxygenase activity.

1985 ◽  
Vol 232 (1) ◽  
pp. 55-59 ◽  
Author(s):  
M H Sullivan ◽  
B A Cooke

The results of this study, carried out with purified rat Leydig cells, indicate that there are no major differences in the stimulating effects of lutropin (LH) and luliberin (LHRH) agonists on steroidogenesis via mechanisms that are dependent on Ca2+. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. All three calmodulin inhibitors used (calmidazolium, trifluoperazine and chlorpromazine) were shown to block LH- and LHRH-agonist-stimulated steroidogenesis. This probably occurred at the step of cholesterol transport to the mitochondria. Similarly, three lipoxygenase inhibitors (nordihydroguaiaretic acid, BW755c and benoxaprofen), inhibited both LH- and LHRH-agonist-stimulated steroidogenesis. The amounts of the inhibitors required were similar for LH- and LHRH-agonist-stimulated steroidogenesis. Steroidogenesis stimulated by the Ca2+ ionophore A23187 was also inhibited, but higher concentrations of the inhibitors were required. Indomethacin (a cyclo-oxygenase inhibitor) increased LHRH-agonist-stimulated steroidogenesis;this is consistent with the role of the products of arachidonic acid metabolism via the alternative, lipoxygenase, pathway. The potentiation of LH-stimulated testosterone production by LHRH agonist was unaffected by indomethacin or by lipoxygenase inhibitors at concentrations that inhibited LH-stimulated testosterone production by 75-100%. It was not possible to eliminate a role of calmodulin in modulating the potentiation, although higher concentrations of the inhibitors were generally required to negate the potentiation than to inhibit LH- or LHRH-agonist-stimulated testosterone production.


1987 ◽  
Vol 241 (2) ◽  
pp. 403-407 ◽  
Author(s):  
M J Jackson ◽  
A J M Wagenmakers ◽  
R H T Edwards

The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


Sign in / Sign up

Export Citation Format

Share Document