scholarly journals Allelic exclusion in transgenic mice carrying mutant human IgM genes.

1988 ◽  
Vol 167 (6) ◽  
pp. 1969-1974 ◽  
Author(s):  
M C Nussenzweig ◽  
A C Shaw ◽  
E Sinn ◽  
J Campos-Torres ◽  
P Leder

Expression of the membrane-bound version of the human mu chain in transgenic mice results in the allelic exclusion of endogenous mouse Ig heavy chain genes (6). The secreted version of the human Ig transgene has no such effect. F1 hybrid animals that carry transgenes for both secreted and membrane-bound human mu chains produce both forms of the human heavy chain while strongly suppressing endogenous mouse mu expression. The simultaneous expression of the two rearranged transgenes in primary B cells suggests that allelic exclusion operates before the formation of a second functionally rearranged heavy chain gene in vivo.

1991 ◽  
Vol 266 (36) ◽  
pp. 24613-24620
Author(s):  
A. Subramaniam ◽  
W.K. Jones ◽  
J. Gulick ◽  
S. Wert ◽  
J. Neumann ◽  
...  

2001 ◽  
Vol 22 (7) ◽  
pp. 400-405 ◽  
Author(s):  
Kimberly D. Klonowski ◽  
Marc Monestier

Cell ◽  
1986 ◽  
Vol 45 (2) ◽  
pp. 247-259 ◽  
Author(s):  
David Weaver ◽  
Moema H. Reis ◽  
Christopher Albanese ◽  
Frank Costantini ◽  
David Baltimore ◽  
...  

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 536-541 ◽  
Author(s):  
CA Felix ◽  
GH Reaman ◽  
SJ Korsmeyer ◽  
GF Hollis ◽  
PA Dinndorf ◽  
...  

Abstract We examined immunoglobulin (Ig) heavy chain, K light chain, and T cell receptor (TCR) gamma and beta gene configuration in the leukemic cells from a series of infants aged less than 1 year with acute lymphoblastic leukemia (ALL). Each of these 11 cases demonstrated leukemic cell surface antigens that have been correlated with a B cell precursor phenotype. Of the 11, lymphoblasts of 4 retained the germline configuration of both Ig and TCR loci, whereas 7 had rearranged the Ig heavy chain gene. Two of these seven showed light chain gene rearrangement. TCB beta chain rearrangement had occurred in only one of the 11 patients' tumors. No TCR gamma chain rearrangements were identified. These results are in contrast to earlier studies of B cell precursor ALL in children in which Ig heavy chain gene rearrangements were evident in every case and approximately 40% showed Ig light chain rearrangement as well. In addition, 45% of cases of B cell precursor ALL of children had rearranged their gamma TCR genes, and 20% had rearranged beta. These data suggest that ALL in infancy represents an earlier stage of B cell development than is found in B cell precursor ALL of children. ALL in the infant age group has been associated with the worst prognosis of all patients with ALL. This study suggests that the disease in infants differs not only clinically, but also at the molecular genetic level, from the disease in children.


1998 ◽  
Vol 30 (Supplement) ◽  
pp. 143
Author(s):  
C. E Wright ◽  
F. Haddad ◽  
P. W. Bodell ◽  
K. M. Baldwin

1989 ◽  
Vol 86 (7) ◽  
pp. 2346-2350 ◽  
Author(s):  
J. Durdik ◽  
R. M. Gerstein ◽  
S. Rath ◽  
P. F. Robbins ◽  
A. Nisonoff ◽  
...  

2004 ◽  
Vol 3 (6) ◽  
pp. 1574-1588 ◽  
Author(s):  
R. Martin ◽  
A. Walther ◽  
J. Wendland

ABSTRACT Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1.


1998 ◽  
Vol 82 (8) ◽  
pp. 908-917 ◽  
Author(s):  
Cort S. Madsen ◽  
Christopher P. Regan ◽  
Jill E. Hungerford ◽  
Sheryl L. White ◽  
Ichiro Manabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document