scholarly journals Induction of classical transplantation tolerance in the adult.

1989 ◽  
Vol 169 (3) ◽  
pp. 779-794 ◽  
Author(s):  
S X Qin ◽  
S Cobbold ◽  
R Benjamin ◽  
H Waldmann

Transplantation tolerance across histoincompatibilities in multiple non-H-2 minors (B10.BR into CBA/Ca) and "minor" plus H-2D (B10.A into CBA/Ca) antigens has been achieved successfully by combined adult bone marrow transplantation and treatment with CD4 and CD8 mAbs. The tolerant state was confirmed by permanent acceptance of donor strain skin grafts, and in vitro unresponsiveness to donor cells. Tolerance was associated with partial donor chimerism to various degrees. Tolerance to minor transplantation antigens induced in this manner was restricted to recipient-type MHC. The possibility was raised that tolerance resulted, at least in part, from clonal anergy rather than deletion.

1978 ◽  
Vol 147 (3) ◽  
pp. 700-707 ◽  
Author(s):  
S Slavin ◽  
B Reitz ◽  
C P Bieber ◽  
H S Kaplan ◽  
S Strober

Lewis rats given total lymphoid irradiation (TLI) accepted bone marrow allografts from AgB-incompatible donors. The chimeras showed no clinical signs of graft-versus-host disease. Skin allografts from the marrow donor strain survived for more than 150 days on the chimeras. However, third-party skin grafts were rejected promptly. Although heart allografts survived more than 300 days in Lewis recipients given TLI and bone marrow allografts, detectable levels of chimerism were not required for permanent survival.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3395
Author(s):  
Ting Bei ◽  
Xusong Cao ◽  
Yun Liu ◽  
Jinmei Li ◽  
Haihua Luo ◽  
...  

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3432-3438 ◽  
Author(s):  
Manuela Battaglia ◽  
Marco Andreani ◽  
Marisa Manna ◽  
Sonia Nesci ◽  
Paola Tonucci ◽  
...  

Bone marrow transplantation (BMT) from an HLA-identical donor is an established therapy to cure homozygous β-thalassemia. Approximately 10% of thalassemic patients developed a persistent mixed chimerism (PMC) after BMT characterized by stable coexistence of host and donor cells in all hematopoietic compartments. Interestingly, in the erythrocytic lineage, close to normal levels of hemoglobin can be observed in the absence of complete donor engraftment. In the lymphocytic lineage, the striking feature is the coexistence of immune cells. This implies a state of tolerance or anergy, raising the issue of immunocompetence of the host. To understand the state of the T cells in PMC, repertoire analysis and functional studies were performed on cells from 3 ex-thalassemics. Repertoire analysis showed a profound skewing. This was due to an expansion of some T cells and not to a collapse of the repertoire, because phytohemagglutinin stimulation showed the presence of a complex repertoire. The immunocompetence of the chimeric immune systems was further established by showing responses to alloantigens and recall antigens in vitro. Both host and donor lymphocytes were observed in the cultures. These data suggest that the expanded T cells play a role in specific tolerance while allowing a normal immune status in these patients.


2014 ◽  
Vol 211 (5) ◽  
pp. 909-927 ◽  
Author(s):  
Adlen Foudi ◽  
Daniel J. Kramer ◽  
Jinzhong Qin ◽  
Denise Ye ◽  
Anna-Sophie Behlich ◽  
...  

The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b’s adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b−/− progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b’s absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Abstract Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3521-3526 ◽  
Author(s):  
Jiang F. Zhong ◽  
Yuxia Zhan ◽  
W. French Anderson ◽  
Yi Zhao

The engraftment of donor bone marrow (BM) cells in nonablated mice is inefficient. Niche availability has been thought to be the reason, and cytoablation with irradiation or cytotoxic agents is routinely used with the belief that this frees the preoccupied niches in recipients. In this study, donor cell redistribution and proliferation in ablated and nonablated mice were compared by implanting donor cells directly into the femur cavity of sedated mice. The redistribution of Lin− donor cells into BM was similar between ablated and nonablated mice. Poor engraftment in nonablated mice was shown to be the result of inefficient donor cell proliferation rather than because of a lack of space. Competitive repopulation assays demonstrated that the donor hematopoietic stem cells (HSCs) were present in nonirradiated recipients for at least 6 months after transplantation, but that they did not expand as did their counterparts in lethally irradiated mice. This study suggests that efficient bone marrow transplantation in nonablated recipients may be possible as a result of better understanding of HSC proliferative regulation and appropriate in vitro manipulation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5404-5404
Author(s):  
Qianli Jiang ◽  
Hao Huang ◽  
Yongjun Zhou ◽  
Qiuxia Zhang ◽  
Sun Xiaowei ◽  
...  

Abstract Background: In our previous work (56th ASH poster, No.2416), we developed a novel cell transplantation system named MagIC-TT. The purpose of this study is to explore whether the MagIC-TT can promote hematopoietic recovery in the mice experiment and illustrate it¡¯s mechanism both in vivo and in vitro. Methods: 1) In vivo study: With regard to auto-transplantation, the C57BL/6 CD45-GFP cells were sorted and magnetized from the bone marrow of C57BL/6-Tg(CAG-EGFP) mice. Forty C57BL/6 female mice (2 groups, twenty mice each group) were transplanted into the femur cavity with or without magnetic field (M or W group), after 7.5Gy irradiation. Following transplantation, the survival of mice, hematopoiesis as well as GFP+ cells in different tissues, such as peripheral blood, bone marrow, liver, spleen, thymus and lung etc. were observed. Femurs of recipients were decalcified with our own derived semi-solid decalcification (SSD) technique to illustrate the distribution, proliferation of donor cells and the relationship between recipients and donor cells. Allo-transplantation: The C57BL/6 CD45-GFP cells were injected into the femur cavity of FVB mRFP transgenic mice (sponsored by Prof. XH Wu, Fudan University, Shanghai, China) after 7.5Gy irradiation. GVHD was observed in addition to what was done in auto-transplantation. 2) In vitro study: Magnetized CD45-GFP cells and non-magnetized BMSC-RFPs were cultured respectively or co-cultured with or without magnetic field (M or W group). The magnetic field was added to the top or the bottom of cell culture dish. Cell morphology, cell proliferation, cell viability, as well as cell migration, transwell migration and matrigel migration assays induced by magnetism were studied. The interaction of CD45-GFP cells and BMSC-RFPs was observed by confocal microscope, electronic microscope, immunohistochemical staining, western blot, real-time PCR and deep sequencing. Results: 1) In vivo study: During the first few hours after transplantation, lots of magnetized CD45-GFP cells resided within the femur and knee joints in M group while few in W group. Many GFP cells migrated into the lung soon after transplantation in the W group (P =0.046), followed by other organs such as kidney and skin (Fig.1). FACS showed that more GFP+ cells resided within the target femurs than the controls (Table.1). With SSD, frozen sections, confocal microscope and Lightsheet Z.1 Microimage (Carl Zeiss); transplanted GFP+ cells and their micro-environment were all well demonstrated (Fig.1). On removal of magnetic field, CD45-GFP cells were observed to migrate into the spleen, kidney, gut and other organs, showing the slow release of target transplanted cells from femur. GVHD on skin and lung etc. were observed in C57BL/6 to FVB allogenic transplanted mice (Fig. 1). The hematopoietic recovery in M group occurs much earlier than the controls, especially for the platelets, 10.67d ¡À 1.53d vs 14.75d ¡À 2.06d (M vs W group, P =0.035). 2) In vitro study: With the help of MagIC-TT, CD45-GFP cells can migrate through the matrigel and transwell membranes much more efficiently. The magnetized CD45-GFP cells advance toward the inner roof of petri dish in the culture medium, and attach to BMSC-RFP growing on the inner roof of dish and proliferate in the niche composed by BMSC-RFP under the effect of magnetic field (Fig.2). Conclusion: MagIC-TT could enhance CD45+ cells target migration, improve stem cell homing and proliferation efficiency, as well as promotion hematopoietic recovery in vivo. This study would shed light on current Hematological Stem Cell Transplantation (HSCT) and other cell therapies. Table 1. The FACS results of femurs of CD45-GFP cells injected into C57 mice, at 0.5h, 24h and 72h respectively. group 0.5h£¨%£© p 24h£¨%£© p 72h£¨%£© p *LC **RT *LC **RT *LC **RT BMM 0.017¡À0.006 0.497¡À0.151 0.040 0.080¡À0.026 1.573¡À0.508 0.030 0.190¡À0.139 1.960¡À0.809 0.049 BMW 0.017¡À0.012 0.050¡À0.017 0.184 0.013¡À0.006 0.027¡À0.015 0.184 0.023¡À0.015 0.320¡À0.434 0.368 P 1.000 0.007 0.013 0.006 0.108 0.036 *LC: Control femur without magnetic field (W group); **RT: Treated femur with magnetic field (M group). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3212-3221 ◽  
Author(s):  
Esther Bachar-Lustig ◽  
Hong Wei Li ◽  
Hilit Gur ◽  
Rita Krauthgamer ◽  
Hadar Marcus ◽  
...  

Induction of transplantation tolerance by means of bone marrow (BM) transplantation could become a reality if it was possible to achieve engraftment of hematopoietic stem cells under nonlethal preparatory cytoreduction of the recipient. To that end, BM facilitating cells, veto cells, or other tolerance-inducing cells, have been extensively studied. In the present study, we show that BM cells within the Sca-1+Lin− cell fraction, previously shown to be enriched for early hematopoietic progenitors, are capable of reducing specifically antidonor CTL-p frequency in vitro and in vivo, and of inducing split chimerism in sublethally 7-Gy–irradiated recipient mice across major histocompatibility complex barriers. The immune tolerance induced by the Sca-1+Lin−cells was also associated with specific tolerance toward donor-type skin grafts. The minimal number of cells required to overcome the host immunity remaining after 7 Gy total body irradiation is very large and, therefore, it may be very difficult to harvest sufficient cells for patients. This challenge was further addressed in our study by demonstrating that non-alloreactive (host × donor)F1 T cells, previously shown to enhance T-cell–depleted BM allografts in lethally irradiated mice, synergize with Sca-1+Lin− cells in their capacity to overcome the major transplantation barrier presented by the sublethal mouse model.


Sign in / Sign up

Export Citation Format

Share Document