scholarly journals Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation.

1991 ◽  
Vol 174 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
J H Cox ◽  
J R Bennink ◽  
J W Yewdell

The E3/19K glycoprotein of adenovirus functions to diminish recognition of adenovirus-infected cells by major histocompatibility complex class I-restricted cytotoxic T lymphocytes (CTLs) by binding intracellular class I molecules and preventing them from reaching the plasma membrane. In the present study we have characterized the nature of the interaction between E3/19K and the H-2Kd (Kd) molecule. An E3/19K molecule genetically engineered to terminate six residues from its normal COOH terminus (delta E19), was found to associate with Kd in a manner indistinguishable from wild-type E3/19K. Unlike E3/19K, however, delta E19 was transported through the Golgi complex to the plasma membrane, where it could be detected biochemically and immunocytochemically using a monoclonal antibody specific for the lumenal domain of E3/19K. Importantly, delta E19 also differed from E3/19K in being unable to prevent the presentation of Kd-restricted viral proteins to CTLs. This is unlikely to be due to delta E19 having a lower avidity for Kd than E3/19K, since delta E19 was able to compete with E3/19K for Kd binding, both physically, and functionally in nullifying the E3/19K blockade of antigen presentation. These findings indicate that the ability of E3/19K to block antigen presentation is due solely to its ability to retain newly synthesized class I molecules in the endoplasmic reticulum.

1997 ◽  
Vol 185 (8) ◽  
pp. 1403-1412 ◽  
Author(s):  
Alice J.A.M. Sijts ◽  
Eric G. Pamer

Association of antigenic peptides with newly synthesized major histocompatibility complex (MHC) class I molecules occurs in the endoplasmic reticulum and is a critical early step for the initiation of cytotoxic T lymphocyte (CTL)-mediated immune defenses. Pathogen-derived peptides compete with a plethora of endogenous peptides for MHC class I grooves. We find that two H2-Kd–restricted peptides, which derive from the Listeria monocytogenes p60 antigen, accumulate in infected cells with different kinetics. Although competition assays suggest that both epitopes are bound with equivalent affinity, they dissociate from MHC class I molecules at markedly different rates. p60 217-225 forms complexes with H2-Kd with a half-life >6 h, while p60 449-457 dissociates from H2-Kd with a half-life of ∼1 h. We find that p60 449-457–H2-Kd complexes retained intracellularly with brefeldin A have a half-life of 30 min, and thus are less stable than surface complexes. While peptide dissociation from retained MHC class I molecules is enhanced, retained H2-Kd molecules maintain a remarkable capacity to bind new T cell epitopes. We find that intracellular H2-Kd molecules can bind new CTL epitopes for up to 3 h after their synthesis. Our studies provide a glimpse of peptide interaction with MHC class I molecules in the endoplasmic reticulum/proximal Golgi complex of intact, infected cells. We propose that the increased intracellular lability of peptide–MHC class I complexes may function to optimize the spectrum of peptides presented to T lymphocytes during cellular infection.


2001 ◽  
Vol 75 (11) ◽  
pp. 5197-5204 ◽  
Author(s):  
Benjamin E. Gewurz ◽  
Evelyn W. Wang ◽  
Domenico Tortorella ◽  
Danny J. Schust ◽  
Hidde L. Ploegh

ABSTRACT The human cytomegalovirus-encoded US2 glycoprotein targets endoplasmic reticulum-resident major histocompatibility complex (MHC) class I heavy chains for rapid degradation by the proteasome. We demonstrate that the endoplasmic reticulum-lumenal domain of US2 allows tight interaction with class I molecules encoded by the HLA-A locus. Recombinant soluble US2 binds properly folded, peptide-containing recombinant HLA-A2 molecules in a peptide sequence-independent manner, consistent with US2's ability to broadly downregulate class I molecules. The physicochemical properties of the US2/MHC class I complex suggest a 1:1 stoichiometry. These results demonstrate that US2 does not require additional cellular proteins to specifically interact with soluble class I molecules. Binding of US2 does not significantly alter the conformation of class I molecules, as a soluble T-cell receptor can simultaneously recognize class I molecules associated with US2. The lumenal domain of US2 can differentiate between the products of distinct class I loci, as US2 binds several HLA-A locus products while being unable to bind recombinant HLA-B7, HLA-B27, HLA-Cw4, or HLA-E. We did not observe interaction between soluble US2 and either recombinant HLA-DR1 or recombinant HLA-DM. The substrate specificity of US2 may help explain the presence in human cytomegalovirus of multiple strategies for downregulation of MHC class I molecules.


2007 ◽  
Vol 88 (5) ◽  
pp. 1429-1439 ◽  
Author(s):  
Katrin Besold ◽  
Nadine Frankenberg ◽  
Sandra Pepperl-Klindworth ◽  
Jürgen Kuball ◽  
Matthias Theobald ◽  
...  

Immune control of human cytomegalovirus (HCMV) infection can be mediated by CD8+ cytolytic T lymphocytes (CTL). Adoptive transfer of antiviral CTL confers protection against HCMV reactivation and disease. The tegument protein pp65 and the immediate-early 1 protein (IE1) are recognized to be major CTL targets, even though during productive infection the viral immunoevasion proteins gpUS2–11 act to suppress major histocompatibility complex (MHC) class I-restricted antigen presentation. Thus it was not clear how infected cells could be labelled with antigenic peptides in the face of immunoevasion. We show here that the immunodominant peptide pp65NLV was presented by MHC class I in cells infected with a gpUS2–11-competent virus. Presentation of pp65NLV was still detectable at 96 h post-infection, although at low levels. Partial suppression of pp65NLV presentation was dependent on the ability of the infecting strain to express gpUS2–11. MHC class I-restricted antigen presentation in HCMV-infected cells (encoding gpUS2–11) exhibited specificity for pp65-derived peptides, as infected fibroblasts did not present the IE1-derived nonapeptide IE1TMY. Remarkably, infected cells could restore pp65NLV peptide presentation after acid removal of MHC class I despite gpUS2–11 expression. This recovery was shown to be dependent on proteasome functionality. In contrast to IE1, pp65 peptides are loaded on MHC class I molecules to be transported to the cell surface at early and late times after infection in the face of gpUS2–11-mediated immunoevasion. pp65 is therefore the first example of an HCMV protein only incompletely subjected to gpUS2–11-mediated immunoevasion.


2018 ◽  
Vol 92 (18) ◽  
Author(s):  
Svenja Fritzlar ◽  
Sinthujan Jegaskanda ◽  
Turgut Esad Aktepe ◽  
Julia Emiley Prier ◽  
Lauren Elise Holz ◽  
...  

ABSTRACTHuman noroviruses are highly infectious single-stranded RNA (ssRNA) viruses and the major cause of nonbacterial gastroenteritis worldwide. With the discovery of murine norovirus (MNV) and the introduction of an effective model for norovirus infection and replication, knowledge about infection mechanisms and their impact on the host immune response has progressed. A major player in the immune response against viral infections is the group of major histocompatibility complex (MHC) class I proteins, which present viral antigen to immune cells. We have observed that MNV interferes with the antigen presentation pathway in infected cells by reducing the surface expression of MHC class I proteins. We have shown that MNV-infected dendritic cells or macrophages have lower levels of surface expression of MHC class I proteins than uninfected and bystander cells. Transcriptional analysis revealed that this defect is not due to a decreased amount of mRNA but is reflected at the protein level. We have determined that this defect is mediated via the MNV NS3 protein. Significantly, treatment of MNV-infected cells with the endocytic recycling inhibitor dynasore completely restored the surface expression of MHC class I proteins, whereas treatment with the proteasome inhibitor MG132 partly restored such expression. These observations indicate a role for endocytic recycling and proteasome-mediated degradation of these proteins. Importantly, we show that due to the reduced surface expression of MHC class I proteins, antigen presentation is inhibited, resulting in the inability of CD8+T cells to become activated in the presence of MNV-infected cells.IMPORTANCEHuman noroviruses (HuNoVs) are the major cause of nonbacterial gastroenteritis worldwide and impose a great burden on patients and health systems every year. So far, no antiviral treatment or vaccine is available. We show that MNV evades the host immune response by reducing the amount of MHC class I proteins displayed on the cell surface. This reduction leads to a decrease in viral antigen presentation and interferes with the CD8+T cell response. CD8+T cells respond to foreign antigen by activating cytotoxic pathways and inducing immune memory to the infection. By evading this immune response, MNV is able to replicate efficiently in the host, and the ability of cells to respond to consecutive infections is impaired. These findings have a major impact on our understanding of the ways in which noroviruses interact with the host immune response and manipulate immune memory.


2006 ◽  
Vol 80 (12) ◽  
pp. 6048-6055 ◽  
Author(s):  
Xiuju Lu ◽  
Daniel G. Kavanagh ◽  
Ann B. Hill

ABSTRACT The murine cytomegalovirus (MCMV) protein m4/gp34 is unique among known viral genes that target the major histocompatibility complex (MHC) class I pathway of antigen presentation in the following two ways: it is found in association with class I MHC molecules at the cell surface, and it inhibits antigen presentation without reducing cell surface class I levels. The current study was undertaken to define more clearly the structural and cellular requirements for m4/gp34 association with the MHC class I molecule Kb. We first assessed the role of the peptide-loading complex in m4/gp34-Kb association, using cell lines lacking TAP, tapasin, or β2m. m4/gp34-Kb complexes formed in the absence of TAP or tapasin, although not as efficiently as in wild-type cells. The expression of full-length and truncation mutants of m4/gp34 in a gutless adenovirus vector revealed that the transmembrane region of m4/gp34 was required for efficient association with the Kb heavy chain. However, the peptide-loading complex was not absolutely required for the association, since m4/gp34 readily formed complexes with Kb in detergent lysates. The addition of Kb-binding peptide to the detergent lysates facilitated but was not essential for the formation of the complexes. The ease of complex formation in detergent lysates contrasted with the small fractions of m4/gp34 and Kb that form complexes in infected cells, suggesting that the endoplasmic reticulum (ER) environment restricts access of m4/gp34 to Kb. Finally, although m4/gp34-Kb complexes could form when m4 was carried either by MCMV or by the adenovirus vector, they were only efficiently exported from the ER in MCMV-infected cells, suggesting that MCMV provides additional factors needed for transport of the complexes.


2017 ◽  
Vol 91 (12) ◽  
Author(s):  
Fumio Maeda ◽  
Jun Arii ◽  
Yoshitaka Hirohata ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
...  

ABSTRACT Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM. IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.


Sign in / Sign up

Export Citation Format

Share Document