scholarly journals Inhibition or activation of human T cell receptor transfectants is controlled by defined, soluble antigen arrays.

1992 ◽  
Vol 176 (5) ◽  
pp. 1421-1430 ◽  
Author(s):  
D E Symer ◽  
R Z Dintzis ◽  
D J Diamond ◽  
H M Dintzis

We present evidence that direct T cell receptor (TCR) occupancy by antigen can either activate or inhibit T cells, depending upon whether or not a threshold number of local TCRs are crosslinked by multivalent arrays of the antigen. Variants of Jurkat cells were previously transfected with TCR alpha and beta chains that bind fluorescein, yielding FL-TCR+ human T cells. The transfectants are activated upon binding soluble multivalent antigen arrays at concentrations well below those required for monovalent interactions. This activation, measured by calcium fluxes and interleukin 2 (IL-2) production, indicates the superior binding avidity of multivalent ligands. Smaller, less multivalent arrays do not activate the cells, but antagonize larger arrays, demonstrating that antigen can bind TCR as either agonist or antagonist. The balance between activation and inhibition depends upon antigen array size, ligand valence, and concentration, indicating that a threshold extent of receptor crosslinking, and not individual perturbations of single TCR, is required for activation by antigen. Approximately 100 stimulatory arrays specifically bind per FL-TCR+ cell at concentrations where IL-2 production is half-maximal.

1987 ◽  
Vol 7 (2) ◽  
pp. 650-656 ◽  
Author(s):  
J A Ledbetter ◽  
L E Gentry ◽  
C H June ◽  
P S Rabinovitch ◽  
A F Purchio

Stimulation of T cells or the Jurkat T-cell line with soluble antibodies to the CD3/T-cell receptor complex causes mobilization of cytoplasmic Ca2+, which is blocked by pertussis toxin but not by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and translocation of protein kinase C activity from the cytoplasm to the membrane. Such stimulation also causes phosphorylation of pp60c-src at an amino-terminal serine residue. These activities are consistent with induction of phosphatidylinositol metabolism after antibody binding. Anti-CD3 stimulation with antibody in solution, however, does not cause Jurkat cells to release interleukin 2 and blocks rather than induces proliferation of T cells. Induction of interleukin 2 production by Jurkat cells and proliferation by normal T cells requires anti-CD3 stimulation with antibody on a solid support, such as Sepharose beads or a plastic dish. Thus, we examined phosphorylation of pp60c-src after stimulation of Jurkat cells with anti-CD3 in solution or on solid phase. Both of these caused serine phosphorylation of pp60c-src that was indistinguishable even after 4 h of stimulation. These results indicate that the mode of anti-CD3 stimulation (in solution or on solid phase) controls a cellular function that modifies the consequences of signal transduction through phosphatidylinositol turnover.


2016 ◽  
Vol 213 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Yuwen Zhu ◽  
Alessandro Paniccia ◽  
Alexander C. Schulick ◽  
Wei Chen ◽  
Michelle R. Koenig ◽  
...  

T cell immunoglobulin and ITIM domain (TIGIT) and CD226 emerge as a novel T cell cosignaling pathway in which CD226 and TIGIT serve as costimulatory and coinhibitory receptors, respectively, for the ligands CD155 and CD112. In this study, we describe CD112R, a member of poliovirus receptor–like proteins, as a new coinhibitory receptor for human T cells. CD112R is preferentially expressed on T cells and inhibits T cell receptor–mediated signals. We further identify that CD112, widely expressed on antigen-presenting cells and tumor cells, is the ligand for CD112R with high affinity. CD112R competes with CD226 to bind to CD112. Disrupting the CD112R–CD112 interaction enhances human T cell response. Our experiments identify CD112R as a novel checkpoint for human T cells via interaction with CD112.


2004 ◽  
Vol 380 (2) ◽  
pp. 425-433 ◽  
Author(s):  
Peng WANG ◽  
Ji ZHANG ◽  
Hong BIAN ◽  
Ping WU ◽  
Reshma KUVELKAR ◽  
...  

Among the three isoenzymes of neuraminidase (Neu) or sialidase, Neu-1 has been suggested to be induced by cell activation and to be involved in IL (interleukin)-4 biosynthesis in murine T-cells. In the present study, we found that antigen-induced airway eosinophilia, a typical response dependent on Th2 (T-helper cell type 2) cytokines, as well as mRNA expression of Th2 cytokines, including IL-4, are suppressed in Neu-1-deficient mice, thereby demonstrating the in vivo role of murine Neu-1 in regulation of Th2 cytokines. To elucidate the roles of various sialidases in human T-cell activation, we investigated their tissue distribution, gene induction and function. Neu-1 is the predominant isoenzyme at the mRNA level in most tissues and cells in both mice and humans, including T-cells. T-cells also have significant levels of Neu-3 mRNAs, albeit much lower than those of Neu-1, whereas the levels of Neu-2 mRNAs are minimal. In human T-cells, both Neu-1 and Neu-3 mRNAs are significantly induced by T-cell-receptor stimulation, as is sialidase activity against 4-methylumbelliferyl-N-acetylneuramic acid (a substrate for both Neu-1 and Neu-3) and the ganglioside GD1a [NeuAcα2-3Galβ1-3GalNAcβ1-4(NeuAcα2-3)Galβ1-4Glcβ1-cer] (a substrate for Neu-3, but not for Neu-1). The expression of the two sialidase genes may be under differential regulation. Western blot analysis and enzymic comparison with recombinant sialidases have revealed that Neu-3 is induced as a major isoform in activated cells. The induction of Neu-1 and Neu-3 in T-cells is unique. In human monocytes and neutrophils stimulated with various agents, the only observation of sialidase induction has been by IL-1 in neutrophils. Functionally, a major difference has been observed in Jurkat T-cell lines over-expressing Neu-1- and Neu-3. Upon T-cell receptor stimulation, IL-2, interferon-γ, IL-4 and IL-13 are induced in the Neu-1 line, whereas in the Neu-3 line the same cytokines are induced, with the exception of IL-4. Taken together, these results suggest an important immunoregulatory role for both Neu-1 and Neu-3 in humans.


1987 ◽  
Vol 7 (2) ◽  
pp. 650-656
Author(s):  
J A Ledbetter ◽  
L E Gentry ◽  
C H June ◽  
P S Rabinovitch ◽  
A F Purchio

Stimulation of T cells or the Jurkat T-cell line with soluble antibodies to the CD3/T-cell receptor complex causes mobilization of cytoplasmic Ca2+, which is blocked by pertussis toxin but not by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and translocation of protein kinase C activity from the cytoplasm to the membrane. Such stimulation also causes phosphorylation of pp60c-src at an amino-terminal serine residue. These activities are consistent with induction of phosphatidylinositol metabolism after antibody binding. Anti-CD3 stimulation with antibody in solution, however, does not cause Jurkat cells to release interleukin 2 and blocks rather than induces proliferation of T cells. Induction of interleukin 2 production by Jurkat cells and proliferation by normal T cells requires anti-CD3 stimulation with antibody on a solid support, such as Sepharose beads or a plastic dish. Thus, we examined phosphorylation of pp60c-src after stimulation of Jurkat cells with anti-CD3 in solution or on solid phase. Both of these caused serine phosphorylation of pp60c-src that was indistinguishable even after 4 h of stimulation. These results indicate that the mode of anti-CD3 stimulation (in solution or on solid phase) controls a cellular function that modifies the consequences of signal transduction through phosphatidylinositol turnover.


1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


1994 ◽  
Vol 14 (2) ◽  
pp. 1095-1103
Author(s):  
A L Burkhardt ◽  
T Costa ◽  
Z Misulovin ◽  
B Stealy ◽  
J B Bolen ◽  
...  

Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.


1987 ◽  
Vol 7 (12) ◽  
pp. 4472-4481
Author(s):  
C H June ◽  
J A Ledbetter ◽  
M M Gillespie ◽  
T Lindsten ◽  
C B Thompson

CD28 is a homodimeric glycoprotein expressed on the surface of a major subset of human T cells that has recently been identified as a member of the immunoglobulin supergene family. The binding of monoclonal antibodies to the CD28 antigen on purified T cells does not result in proliferation; however, previous studies have shown that the combination of CD28 stimulation and protein kinase C activation by phorbol myristate acetate (PMA) results in T-cell proliferation that is independent of both accessory cells and activation of the T-cell receptor-CD3 complex. In the present study, effects of stimulation by anti-CD28 on cell cycle progression and on the interleukin 2 (IL-2) and IL-2 receptor system have been investigated on primary cultures of purified peripheral-blood CD28+ T cells. There was no measurable effect on cell size or on DNA synthesis after stimulation of resting (G0) cells by CD28 alone. After 3 h of activation of T cells by PMA alone, a slight (8%) increase in cell volume occurred that did not progress to DNA synthesis. In contrast, T-cell stimulation by CD28 in combination with PMA resulted in a progressive increase in cell volume in approximately 100% of cells at 12 to 14 h after stimulation. Northern blot (RNA blot) analysis revealed that CD28 stimulation alone failed to cause expression of the alpha chain of the IL-2 receptor or of IL-2 mRNA, and in accord with previous studies, stimulation by PMA alone resulted in the accumulation of IL-2 receptor transcripts but no detectable IL-2 mRNA. In contrast, T-cell stimulation by the combination of CD28 and PMA resulted in the appearance of IL-2 transcripts and enhanced expression of IL-2 receptor mRNA. Functional studies revealed that the proliferation induced by CD28 and PMA stimulation was entirely resistant to cyclosporine, in contrast to T-cell activation induced by the CD3-T-cell receptor complex. Cyclosporine was found not to affect the accumulation of IL-2 mRNA after CD28 plus PMA stimulation, although there was no detectable IL-2 mRNA after stimulation by CD3 in the presence of the drug. Furthermore, stimulation by CD28 in combination with immobilized CD3 antibodies caused a striking enhancement of IL-2 mRNA expression that was, in part, resistant to the effects of cyclosporine. These studies indicate that the CD28 molecule synergizes with protein kinase C activation to induce IL-2 gene expression and demonstrate that stimulation by the CD28 pathway can cause vigorous T-cell proliferation even in the presence of cyclosporine and that cyclosporine does not prevent transcription of 16-2 mRNA, as has been suggested previously. Moreover, these findings suggest that a potential role for the CD28 molecule in vivo may be to augment IL-2 production after stimulation of the CD3-T-cell receptor molecular complex and thereby to amplify an antigen-specific immune response. Finally, these results provide further evidence that the CD28 molecule triggers T-cell proliferation in a manner that differs biochemically from CD3-T-cell receptor-induced proliferation.


1995 ◽  
Vol 182 (3) ◽  
pp. 759-767 ◽  
Author(s):  
K Sato ◽  
K Ohtsuka ◽  
K Hasegawa ◽  
S Yamagiwa ◽  
H Watanabe ◽  
...  

In addition to the major intrathymic pathway of T cell differentiation, extrathymic pathways of such differentiation have been shown to exist in the liver and intestine. In particular, hepatic T cells of T cell receptors or CD3 of intermediate levels (i.e., intermediate T cell receptor cells) always contain self-reactive clones and sometimes appear at other sites, including the target tissues in autoimmune diseases and the tumor sites in malignancies. To prove their extrathymic origin and self reactivity, in this study we used thymectomized, irradiated (B6 x C3H/He) F1 mice subjected to transplantation of bone marrow cells of B6 mice. It was clearly demonstrated that all T cells generated under athymic conditions in the peripheral immune organs are intermediate CD3 cells. In the case of nonthymectomized irradiated mice, not only intermediate CD3 cells but also high CD3 cells were generated. Phenotypic characterization showed that newly generated intermediate CD3 cells were unique (e.g., interleukin 2 receptor alpha-/beta+ and CD44+ L-selectin-) and were, therefore, distinguishable from thymus-derived T cells. The precursor cells of intermediate CD3 cells in the bone marrow were Thy-1+ CD3-. The extrathymic generation of intermediate CD3 cells was confirmed in other combinations of bone marrow transplantation, C3H --> C3H and B10.Thy1.1 --> B6.Thy1.2. The generated intermediate CD3 cells in the liver contained high levels of self-reactive clones estimated by anti-V beta monoclonal antibodies in conjunction with the endogenous superantigen minor lymphocyte-stimulating system, especially the combination of B6 --> (B6 x C3H/He) (graft-versus-host-situation).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document