scholarly journals Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture.

1993 ◽  
Vol 177 (5) ◽  
pp. 1469-1473 ◽  
Author(s):  
K A Hogquist ◽  
M A Gavin ◽  
M J Bevan

We have used an in vitro system to study the effects of major histocompatibility complex class I binding peptides on thymic development. Fetal thymus lobes from mice deficient in the class I light chain (beta 2 microglobulin or beta 2 M-/-) were cultured for 10 d in vitro, during which time T cell precursors develop into mature T cells. In these organ cultures, as in the adult or neonatal beta 2 M-/- thymus, CD8+ mature T cells did not develop, demonstrating that the mature T cells seen during early murine thymic development are the result of the positive selection process. To these cultures we added various class I binding peptides with or without a source of exogenous beta 2M. CD8+ T cells developed to various degrees only in the presence of beta 2M and peptides. Using peptide mixtures of differing complexity, we showed that the efficiency of this process is dependent more on peptide complexity than on peptide concentration. These data argue for a specific role for peptides in the process of positive selection. Furthermore, this culture system should be useful in identifying peptides that can promote positive selection of cells expressing a specific T cell receptor (TCR) in TCR transgenic mice.

1995 ◽  
Vol 181 (2) ◽  
pp. 787-792 ◽  
Author(s):  
H Martien van Santen ◽  
A Woolsey ◽  
P G Rickardt ◽  
L Van Kaer ◽  
E J Baas ◽  
...  

Mice harboring a deletion of the gene encoding the transporter associated with antigen presentation-1 (TAP1) are impaired in providing major histocompatibility complex (MHC) class I molecules with peptides of cytosolic origin and lack stable MHC class I cell surface expression. They consequently have a strongly reduced number of CD8+ T cells. To examine whether selection of CD8+ T cells is dependent on TAP-dependent peptides, we partially restored MHC class I cell surface expression in TAP1-deficient mice by introduction of human beta 2-microglobulin. We show that selection of functional CD8+ T cells can be augmented in vivo in the absence of TAP1-dependent peptides.


1992 ◽  
Vol 175 (4) ◽  
pp. 1143-1145 ◽  
Author(s):  
B S Bender ◽  
T Croghan ◽  
L Zhang ◽  
P A Small

To investigate the role of CD8+ T lymphocytes in recovery from influenza pneumonia, we used transgenic mice either homozygous (-/-) or heterozygous (+/-) for beta 2-microglobulin (beta 2-M) gene disruption. These mice lack major histocompatibility complex-restricted class I (CD8+) T cells. We found that after challenge with a nonlethal influenza virus, the beta 2-M (-/-) mice had significantly delayed pulmonary viral clearance. Furthermore, after challenge with a more virulent influenza virus, the beta 2-M (-/-) mice had a significantly higher mortality rate than did control mice. Thus, CD8+ T cells are important in recovery from virulent influenza infections, but other host defense mechanisms can clear the respiratory tract of more benign infections.


1992 ◽  
Vol 4 (10) ◽  
pp. 1195-1198 ◽  
Author(s):  
Kyuhei Tomonari

Rheumatology ◽  
2019 ◽  
Vol 59 (1) ◽  
pp. 224-232
Author(s):  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Akito Takamura ◽  
Naoki Kimura ◽  
Kimito Kawahata ◽  
...  

Abstract Objectives The hallmark histopathology of PM is the presence of CD8+ T cells in the non-necrotic muscle cells. The aim of this study was to clarify the pathological significance of CD8+ T cells in muscle cells. Methods C2C12 cells were transduced retrovirally with the genes encoding MHC class I (H2Kb) and SIINFEKL peptide derived from ovalbumin (OVA), and then differentiated to myotubes (H2KbOVA-myotubes). H2KbOVA-myotubes were co-cultured with OT-I CD8+ T cells derived from OVA-specific class I restricted T cell receptor transgenic mice as an in vitro model of PM to examine whether the CD8+ T cells invade into the myotubes and if the myotubes with the invasion are more prone to die than those without. Muscle biopsy samples from patients with PM were examined for the presence of CD8+ T cells in muscle cells. The clinical profiles were compared between the patients with and without CD8+ T cells in muscle cells. Results Analysis of the in vitro model of PM with confocal microscopy demonstrated the invasion of OT-I CD8+ T cells into H2KbOVA-myotubes. Transmission electron microscopic analysis revealed an electron-lucent area between the invaded CD8+ T cell and the cytoplasm of H2KbOVA-myotubes. The myotubes invaded with OT-I CD8+ T cells died earlier than the uninvaded myotubes. The level of serum creatinine kinase was higher in patients with CD8+ T cells in muscle cells than those without these cells. Conclusion CD8+ T cells invade into muscle cells and contribute to muscle injury in PM. Our in vitro model of PM is useful to examine the mechanisms underlying muscle injury induced by CD8+ T cells.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


Sign in / Sign up

Export Citation Format

Share Document