peptide motifs
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 52)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Vol 2 (2) ◽  
pp. 107-126
Author(s):  
Rabbiah Manzoor Malik ◽  
Sahar Fazal ◽  
Syed Touqeer Abbas ◽  
Aamer Bhatti ◽  
Mukhtar Ullah ◽  
...  

Background: Human Papillomavirus (HPV) infection has been found to be the major cause of cancer of cervical region, in females.  Genome of HPV codes for 6 functional proteins E1, E2, E4, E5, E6 and E7. These proteins play different roles in development of HPV infection and its progression towards cervical cancer. The interactions of HPV proteins with human DNA and proteins occurs in the presence of short linear peptide motifs on these proteins, have similar sequence to those found on proteins in human cells. Methods: After identification of human motifs in HPV proteins, by use of ELM resource, their counter domains were found from PROSITE. The proteins of human proteome containing these counter domains were predicted as the proteins having possibility of interactions with HPV proteins.    Results: we predicted 9468 human proteins for having interactions with HPV proteins. Our predicted proteins were enriched with the host proteins having possibility of being interacted by HPV proteins. 10% of our predicted proteins were already reported to be affected by one or more HPV proteins. The list of predicated proteins can be utilized to find out the connectivity between the virus HPV and human host. It can also be used to determine the pathways involved in pathogenesis of HPV leading towards the cervical cancer Conclusion: The list of predicated proteins can be utilized to find out the connectivity between the virus HPV and human host. It can also be used to determine the pathways involved in pathogenesis of HPV leading towards the cervical cancer.


2021 ◽  
Author(s):  
◽  
Jack Alexander Sissons

<p>Throughout all domains of life, phosphopantetheinyl transferase (PPTase) enzymes catalyse a post-translational modification that is important in both primary and secondary metabolism; the transfer of a phosphopantetheine (PPant) group derived from Coenzyme A to specific protein domains within large, multi-modular biosynthetic enzymes, thereby activating each module for biosynthesis. The short peptide motif of the protein to which this group is attached is known as a ‘tag’, and can be fused to other proteins, making them also substrates for post-translational modification by a PPTase. Additionally, it has been demonstrated that PPTases can utilise a diverse range of CoA analogues, such as biotin-linked or click-chemistry capable CoA derivatives, as substrates for tag attachment. Together, these characteristics make post-translational modification by PPTases an attractive system for many different biotechnological applications. Perhaps the most significant application is in vivo and in vitro site-specific labelling of proteins, for which current technologies are hindered by cumbersome fusion protein requirements, toxicity of the process, or limited reporter groups that can be attached. Confoundingly, most PPTases exhibit a high degree of substrate promiscuity which limits the number of PPTase-tag pairs that can be used simultaneously, and therefore the number of protein targets that can be simultaneously labelled. To address this, directed evolution at a single gene level was used in an attempt to generate multiple PPTase variants that have non-overlapping tag specificity which have applications in orthogonal labelling. Furthermore, assays for the rapid identification, characterisation and evolution of short, novel peptide motifs that are recognised by PPTases has further diversified the labelling toolkit. These developments have enhanced the utility of the PPTase system and potentially have a wide range of applications in a number of fields.</p>


2021 ◽  
Author(s):  
◽  
Jack Alexander Sissons

<p>Throughout all domains of life, phosphopantetheinyl transferase (PPTase) enzymes catalyse a post-translational modification that is important in both primary and secondary metabolism; the transfer of a phosphopantetheine (PPant) group derived from Coenzyme A to specific protein domains within large, multi-modular biosynthetic enzymes, thereby activating each module for biosynthesis. The short peptide motif of the protein to which this group is attached is known as a ‘tag’, and can be fused to other proteins, making them also substrates for post-translational modification by a PPTase. Additionally, it has been demonstrated that PPTases can utilise a diverse range of CoA analogues, such as biotin-linked or click-chemistry capable CoA derivatives, as substrates for tag attachment. Together, these characteristics make post-translational modification by PPTases an attractive system for many different biotechnological applications. Perhaps the most significant application is in vivo and in vitro site-specific labelling of proteins, for which current technologies are hindered by cumbersome fusion protein requirements, toxicity of the process, or limited reporter groups that can be attached. Confoundingly, most PPTases exhibit a high degree of substrate promiscuity which limits the number of PPTase-tag pairs that can be used simultaneously, and therefore the number of protein targets that can be simultaneously labelled. To address this, directed evolution at a single gene level was used in an attempt to generate multiple PPTase variants that have non-overlapping tag specificity which have applications in orthogonal labelling. Furthermore, assays for the rapid identification, characterisation and evolution of short, novel peptide motifs that are recognised by PPTases has further diversified the labelling toolkit. These developments have enhanced the utility of the PPTase system and potentially have a wide range of applications in a number of fields.</p>


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1737
Author(s):  
Michele Anselmi ◽  
Monica Baiula ◽  
Federica Santino ◽  
Junwei Zhao ◽  
Santi Spampinato ◽  
...  

Arg-Gly-Asp (RGD)-binding integrins, e.g., αvβ3, αvβ1, αvβ5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4β1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4β1 integrin, we designed hybrid α/β peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide–zeolite MLs were able to capture selectively α4β1 integrin-expressing cells. In perspective, the α4β1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4β1 integrin-correlated diseases.


2021 ◽  
Vol 22 (19) ◽  
pp. 10264
Author(s):  
Long He ◽  
Xuan Chen ◽  
Miaoze Xu ◽  
Tingting Liu ◽  
Tianye Zhang ◽  
...  

Cystatins, as reversible inhibitors of papain-like and legumain proteases, have been identified in several plant species. Although the cystatin family plays crucial roles in plant development and defense responses to various stresses, this family in wheat (Triticum aestivum L.) is still poorly understood. In this study, 55 wheat cystatins (TaCystatins) were identified. All TaCystatins were divided into three groups and both the conserved gene structures and peptide motifs were relatively conserved within each group. Homoeolog analysis suggested that both homoeolog retention percentage and gene duplications contributed to the abundance of the TaCystatin family. Analysis of duplication events confirmed that segmental duplications played an important role in the duplication patterns. The results of codon usage pattern analysis showed that TaCystatins had evident codon usage bias, which was mainly affected by mutation pressure. TaCystatins may be regulated by cis-acting elements, especially abscisic acid and methyl jasmonate responsive elements. In addition, the expression of all selected TaCystatins was significantly changed following viral infection and cold stress, suggesting potential roles in response to biotic and abiotic challenges. Overall, our work provides new insights into TaCystatins during wheat evolution and will help further research to decipher the roles of TaCystatins under diverse stress conditions.


2021 ◽  
Author(s):  
Le Zhang ◽  
Geng Liu ◽  
Guixue Hou ◽  
Haitao Xiang ◽  
Xi Zhang ◽  
...  

Although database search tools originally developed for shotgun proteome have been widely used in immunopeptidomic mass spectrometry identifications, they have been reported to achieve undesirably low sensitivities and/or high false positive rates as a result of the hugely inflated search space caused by the lack of specific enzymic digestions in immunopeptidome. To overcome such a problem, we have developed a motif-guided immunopeptidome database building tool named IntroSpect, which is designed to first learn the peptide motifs from high confidence hits in the initial search and then build a targeted database for refined search. Evaluated on three representative HLA class I datasets, IntroSpect can improve the sensitivity by an average of 80% comparing to conventional searches with unspecific digestions while maintaining a very high accuracy (~96%) as confirmed by synthetic validation experiments. A distinct advantage of IntroSpect is that it does not depend on any external HLA data so that it performs equally well on both well-studied and poorly-studied HLA types, unlike a previously developed method SpectMHC. We have also designed IntroSpect to keep a global FDR that can be conveniently controlled, similar to conventional database search engines. Finally, we demonstrate the practical value of IntroSpect by discovering neoantigens from MS data directly. IntroSpect is freely available at https://github.com/BGI2016/IntroSpect.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexandre Blanco-González ◽  
Martín Calvelo ◽  
Pablo F. Garrido ◽  
Manuel Amorín ◽  
Juan R. Granja ◽  
...  

Self-assembling cyclic peptide nanotubes have been shown to function as synthetic, integral transmembrane channels. The combination of natural and nonnatural aminoacids in the sequence of cyclic peptides enables the control not only of their outer surface but also of the inner cavity behavior and properties, affecting, for instance, their permeability to different molecules including water and ions. Here, a thorough computational study on a new class of self-assembling peptide motifs, in which δ-aminocycloalkanecarboxylic acids are alternated with natural α-amino acids, is presented. The presence of synthetic δ-residues creates hydrophobic regions in these α,δ-SCPNs, which makes them especially attractive for their potential implementation in the design of new drug or diagnostic agent carrier systems. Using molecular dynamics simulations, the behavior of water molecules, different ions (Li+, Na+, K+, Cs+, and Ca2+), and their correspondent counter Cl− anions is extensively investigated in the nanoconfined environment. The structure and dynamics are mutually combined in a diving immersion inside these transmembrane channels to discover a fascinating submarine nanoworld where star-shaped water channels guide the passage of cations and anions therethrough.


2021 ◽  
Vol 1 ◽  
Author(s):  
Matylda Anna Izert ◽  
Patrycja Emanuela Szybowska ◽  
Maria Wiktoria Górna ◽  
Matthew Merski

Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Antonín Brisuda ◽  
James C. S. Ho ◽  
Pancham S. Kandiyal ◽  
Justin T-Y. Ng ◽  
Ines Ambite ◽  
...  

AbstractPartially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479). A 39-residue alpha-helical peptide from alpha-lactalbumin is shown to gain lethality for tumor cells by forming oleic acid complexes (alpha1-oleate). Nuclear magnetic resonance measurements and computational simulations reveal a lipid core surrounded by conformationally fluid, alpha-helical peptide motifs. In a single center, placebo controlled, double blinded Phase I/II interventional clinical trial of non-muscle invasive bladder cancer, all primary end points of safety and efficacy of alpha1-oleate treatment are reached, as evaluated in an interim analysis. Intra-vesical instillations of alpha1-oleate triggers massive shedding of tumor cells and the tumor size is reduced but no drug-related side effects are detected (primary endpoints). Shed cells contain alpha1-oleate, treated tumors show evidence of apoptosis and the expression of cancer-related genes is inhibited (secondary endpoints). The results are especially encouraging for bladder cancer, where therapeutic failures and high recurrence rates create a great, unmet medical need.


Sign in / Sign up

Export Citation Format

Share Document