scholarly journals The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver.

1993 ◽  
Vol 178 (3) ◽  
pp. 951-960 ◽  
Author(s):  
Y S Li ◽  
K Hayakawa ◽  
R R Hardy

The expression of B lineage associated genes during early B cell differentiation stages is not firmly established. Using cell surface markers and multiparameter flow cytometry, bone marrow (BM) cells can be resolved into six fractions, representing sequential stages of development; i.e., pre-Pro-B, early Pro-B, late Pro-B/large Pre-B, small Pre-B, immature B, and mature B cells. Here we quantitate the levels of several B lineage associated genes in each of these fractions by RT-PCR, demonstrating different patterns of expression. We find that expression of terminal deoxynucleotidyl transferase (TdT), lambda 5, and VpreB is predominantly restricted to the Pro-B stages. Rag-1 and Rag-2 expression is also tightly regulated, and is found largely in the Pro-B through small Pre-B stages. Mb-1 is present from Pro-B throughout the pathway at high levels. Finally, Bcl-2 is expressed at high levels only at the pre-Pro-B and mature B stages, whereas it is low during all the intermediate stages. We also correlate this expression data with an analysis of the onset of Ig gene rearrangement as assessed by amplifying D-JH, VH-DJH, and VK-JK. Finally, we report differences in gene expression during B lymphopoiesis at two distinct ontogenic timings, in fetal liver and adult BM: both TdT and the precursor lymphocyte regulated myosin-like light chain are expressed at high levels in the Pro-B cell stage in bone marrow, but are absent from the corresponding fraction in fetal liver. In contrast, lambda 5, VpreB, Rag-1, and Rag-2 are expressed at comparable levels.

1995 ◽  
Vol 182 (4) ◽  
pp. 973-982 ◽  
Author(s):  
L G Billips ◽  
C A Nuñez ◽  
F E Bertrand ◽  
A K Stankovic ◽  
G L Gartland ◽  
...  

Bone marrow stromal cells promote B cell development involving recombinase gene-directed rearrangement of the immunoglobulin genes. We observed that the stromal cell-derived cytokine interleukin 7 (IL-7) enhances the expression of CD19 molecules on progenitor B-lineage cells in human bone marrow samples and downregulates the expression of terminal deoxynucleotidyl transferase (TdT) and the recombinase-activating genes RAG-1 and RAG-2. Initiation of the TdT downregulation on the first day of treatment, CD19 upregulation during the second day, and RAG-1 and RAG-2 downmodulation during the third day implied a cascade of IL-7 effects. While CD19 ligation by divalent antibodies had no direct effect on TdT or RAG gene expression, CD19 cross-linkage complete blocked the IL-7 downregulation of RAG expression without affecting the earlier TdT response. These results suggest that signals generated through CD19 and the IL-7 receptor could modulate immunoglobulin gene rearrangement and repertoire diversification during the early stages of B cell differentiation.


1993 ◽  
Vol 178 (3) ◽  
pp. 1007-1016 ◽  
Author(s):  
J L Pennycook ◽  
Y Chang ◽  
J Celler ◽  
R A Phillips ◽  
G E Wu

The severe combined immunodeficiency (scid) mouse has a defective V(D)J recombinase activity that results in arrested lymphoid development at the pro-B cell stage in the B lineage. The defect is not absolute and scid mice do attempt gene rearrangement. Indeed, approximately 15% of all scid mice develop detectable levels of oligoclonal serum immunoglobulin and T cell activity. To gain more insight into the scid defect and its effect on V(D)J rearrangement, we analyzed DJH recombination in scid bone marrow. We determined that DJH structures are present in scid bone marrow and occur at a frequency only 10-100 times less than C.B-17+/+. The scid DJH repertoire is limited and resembles fetal liver DJH junctions, with few N insertions and predominant usage of reading frame 1. Moreover, 70% of the DJH structures were potentially productive, indicating that normal V(D)J recombinants should be arising continually.


2000 ◽  
Vol 178 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Claudine Schiff ◽  
Benedicte Lemmers ◽  
Anne Deville ◽  
Michel Fougereau ◽  
Eric Meffre

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1647-1656 ◽  
Author(s):  
TN Small ◽  
CA Keever ◽  
S Weiner-Fedus ◽  
G Heller ◽  
RJ O'Reilly ◽  
...  

Abstract The circulating lymphocytes of 88 consecutive patients following autologous, conventional, or T-cell depleted bone marrow transplantation were serially analyzed for B-cell surface antigen expression and function. In the majority of patients, except for those who developed chronic graft-versus-host disease, the number of circulating CD20+ B cell normalized by the fourth posttransplant month. The earliest detectable B cells normally expressed HLA-DR, CD19, surface immunoglobulin (slg), CD21, Leu-8, and lacked expression of CD10 (CALLA). In addition, the circulating B cells expressed CD1c, CD38, CD5, and CD23 for the first year following transplant, antigens that are normally expressed on a small percentage of circulating B cells in normal adults, but highly expressed on cord blood B cells. Similar to cord blood B cells, patient B cells isolated during the first year following transplant, proliferated normally to Staphylococcus aureus Cowan strain I (SAC), and produced IgM, but minimal or no IgG when stimulated with pokeweed mitogen and SAC, unlike normal adult B cells that produce both. The similar phenotype and function of posttransplant and cord blood B cells, and their similar rate of decline in patients and normal children adds further evidence to support the hypothesis that B-cell differentiation posttransplant is recapitulating normal B-cell ontogeny.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4341-4341
Author(s):  
Nikki R. Kong ◽  
Li Chai ◽  
Astar Winoto ◽  
Robert Tjian

Abstract Hematopoiesis is a multi-step developmental process that requires an intricate coordination of signal relays and transcriptional regulation to give rise to all blood lineages in the organism. Hematopoietic stem/progenitor cells (HSPCs) can be driven to differentiate along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for HSPCs is whether to adopt the lymphoid or myeloid fate. Despite the discovery of several transcription factors required for different lineages of hematopoietic differentiation, the understanding of how gene expression allows HSPCs to adopt the lymphoid fate still remains incomplete. A study using an inducible hematopoietic-specific (Mx1-Cre) KO mouse line found that Myocyte Enhancer Factor 2C (MEF2C) is required for multi-potent HSPCs to differentiate into the lymphoid lineage (Stehling-Sun et al, 2009). However, the mechanisms of how MEF2C is activated and in turn, drives lymphoid fate specification are not known. Through a candidates approach with co-expression and co-immunoprecipitation, we have identified Early B Cell Factor 1 (EBF1) to be a specific interacting partner of MEF2C, and not other B cell specific transcription factors such as E12, E47, or PAX5. Genome-wide survey of MEF2C and EBF1 binding sites via chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in a proB cell line revealed that these two sequence-specific transcription factors co-occupy the promoters and intragenic regions of many B cell specific genes such as Il7ra, Myb, Foxo1, Ets1, Ebf1 itself, and Pou2af1. Regulatory regions of Il7ra and Foxo1 derived from the ChIP-seq data, as well as an artificial enhancer containing trimerized MEF2C and EBF1 binding sites, were examined in luciferase reporter assays and found to be sufficient to drive transcription from a minimal reporter in 293T cells. Further, this activation was co-dependent on MEF2C and EBF1 expression. The functional relevance of MEF2C binding was further supported by gene expression analyses of MEF2C-regulated B lineage genes in Mx1-Cre Mef2c KO mice compared to WT mice. Consistent with ChIP-seq and luciferase reporter assays, Myb, Ebf1, Il7ra, and Foxo1 all had significantly decreased expression levels in MEF2C-null HSPCs as well as B lineage progenitor cells, compared to sex-matched littermate control mice. Interestingly, myeloid gene expression in Mef2c-KO mice was increased compared to WT control. MEF2C ChIP-seq in a murine HSPC line revealed that it binds myeloid lineage gene targets that are not regulated by MEF2C in proB cells. These results suggest that MEF2C can repress myeloid gene expression in HSPCs. To elucidate the mechanism of this functional switch, we tested the requirement for MAPK pathways to phosphorylate and activate MEF2C at three previously identified residues in order to drive B cell differentiation. Inhibition of p38 MAPK (p38i), but not ERK1/2/5, decreased the potential of HSPCs to differentiate into B220+CD19+ B cells cultured with cytokines that drive this particular lineage fate. Instead, p38i-treated progenitor cells gave rise to more myeloid cells. 65% of this phenotype was rescued by over-expressing a phosphomimetic mutant of MEF2C that can bypass p38 inhibition. Furthermore, MEF2C is known to bind class II HDAC proteins to repress gene expression, providing a possible mechanism for its repression of myeloid transcription program. Supporting this mechanism, phosphomimetic and HDAC-binding double mutant of MEF2C can rescue p38 inhibition phenotype almost 100%. Taken together, this study elucidated the molecular mechanisms of a key lymphoid-specific lineage fate determinant, MEF2C. We discovered that p38 MAPK converts MEF2C from a transcriptional repressor to an activator by phosphorylation in B cell specification, which can be applied to understanding other cell differentiation processes regulated by this important stress-induced signaling pathway. Furthermore, we identified MEF2C’s binding and co-activating partner EBF1, several novel B cell specific targets that it activates in proB cells, and a novel myeloid transcription program that it represses in hematopoietic progenitors. Therefore, these results expanded our understanding of the intricate transcription network that regulates B cell differentiation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document