Trisomy of the Down Syndrome Critical Region Suppresses Precursor B-Cell Differentiation and Promotes B-Cell Transformation Associated with Altered Expression of Polycomb Repressor Complex 2 Targets

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Li ◽  
Qin Zeng ◽  
Shuyi Wang ◽  
Mengyuan Li ◽  
Xionghui Chen ◽  
...  

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


2013 ◽  
Vol 210 (13) ◽  
pp. 2823-2832 ◽  
Author(s):  
Beate Heizmann ◽  
Philippe Kastner ◽  
Susan Chan

Pre-B cell receptor (pre-BCR) signaling and migration from IL-7–rich environments cooperate to drive pre-B cell differentiation via transcriptional programs that remain unclear. We show that the Ikaros transcription factor is required for the differentiation of large pre-B to small pre-B cells. Mice deleted for Ikaros in pro/pre-B cells show a complete block of differentiation at the fraction C′ stage, and Ikaros-null pre-B cells cannot differentiate upon withdrawal of IL-7 in vitro. Restoration of Ikaros function rescues pre-B cell differentiation in vitro and in vivo and depends on DNA binding. Ikaros is required for the down-regulation of the pre-BCR, Igκ germline transcription, and Ig L chain recombination. Furthermore, Ikaros antagonizes the IL-7–dependent regulation of &gt;3,000 genes, many of which are up- or down-regulated between fractions C′ and D. Affected genes include those important for survival, metabolism, B cell signaling, and function, as well as transcriptional regulators like Ebf1, Pax5, and the Foxo1 family. Our data thus identify Ikaros as a central regulator of IL-7 signaling and pre-B cell development.


2017 ◽  
Vol 1 (S1) ◽  
pp. 10-10
Author(s):  
Sara Blick ◽  
Craig Morrell ◽  
Sara Ture ◽  
David J. Field

OBJECTIVES/SPECIFIC AIMS: To investigate the role of platelet factor-4 (PF4) in B cell differentiation and develop strategies to better modulate B cell differentiation in vitro and in vivo. METHODS/STUDY POPULATION: We use tissue culture and flow cytometry to examine the role of PF4 in B cell differentiation. We use wild type (WT) and PF4−/− mice on a C57Bl6/J background. PF4−/− mice have reduced in vivo B cell differentiation responses. RESULTS/ANTICIPATED RESULTS: We anticipate that our studies will demonstrate that PF4 promotes B cell differentiation in the bone marrow microenvironment. DISCUSSION/SIGNIFICANCE OF IMPACT: The significance of this project may be valuable in developing efficient methods and strategies to increase or limit B cell numbers in vitro and in human disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1152-1152
Author(s):  
Rita Fragoso ◽  
Catia Igreja ◽  
Claudia Appleton ◽  
Alexandra Henriques ◽  
Nuno Clode ◽  
...  

Abstract VEGF and its receptors are expressed in the hematopoietic system. A role for FLT-1 in particular was described in monocyte-macrophage migration and lineage differentiation (Sawano A et al, 2001), megakaryocytes maturation (Casella I et al, 2003) and dendritic cell differentiation (Dikov M et al, 2005). Given that the expression of this receptor in the lymphoid lineage is not known, we to studied FLT-1 expression and a putative function in normal lymphoid progenitors. To address this question we induced in vitro CD34+ cells differentiation into the B cell lineage using a well established assay (on S17 stromal cells). With this approach, we observed that FLT-1 is expressed throughout B cell differentiation increasing along the differentiation process, and reaching its highest at the “immature B cell” stage. We also neutralized FLT-1 during B cell differentiation in vitro. Surprisingly, in the presence of the FLT-1 neutralizing antibody (6.12 monoclonal Ab, from ImClone systems), at the end of the assays (4 different experiments) a significantly higher number of CD19+ cells (mainly immature B cells) were detected. Analyzing some of the transcription factors known to be involved in the commitment and differentiation of lymphoid B cells, we observed that the expression of PU.1, Pax5 and E47 was up-regulated by FLT-1 neutralization. Next, given that FLT-1 function was mainly associated with cell migration, and since it is expressed in B cells that are ready to exit the bone marrow into secondary lymphoid organs, we reasoned that FLT-1 might have a role in B cells exit from the bone marrow. For this purpose, we treated mice with the FLT-1 neutralizing Ab for 3 days and analyzed B cells levels in bone marrow and peripheral blood. FLT-1 neutralization led to a significant decrease (p&lt;0.05) in B cells in the bone marrow and peripheral blood. Taken together, our data supports a clear role for FLT-1 in B cell commitment. To understand if VEGF/PlGF signalling through FLT-1 promotes myeloid differentiation, suppresses B cell differentiation or simply regulates the quiescent state of hematopoietic stem cells, we differentiated in vitro CD34+/FLT-1− cells and CD34+/FLT-1+ cells (10% of CD34+ cells) using the assay described above. Interestingly, CD34+/FLT-1− differentiation in vitro largely promoted B cell differentiation, while CD34+/FLT-1+ cells originated mostly myeloid cell differentiation. We are currently exploiting the molecular basis whereby FLT-1 signalling may impair B cells commitment and possibly promotes myeloid differentiation.


2019 ◽  
Author(s):  
Muhammad Assad Aslam ◽  
Mir Farshid Alemdehy ◽  
Eliza Mari Kwesi-Maliepaard ◽  
Marieta Caganova ◽  
Iris N. Pardieck ◽  
...  

AbstractDifferentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B cell fate remain unclear. Here we identified a central role for the histone H3K79 methyltransferase DOT1L in controlling B cell differentiation. Murine B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells showed aberrant differentiation and prematurely acquired plasma cell features. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro-proliferative, pro-GC program. In addition, DOT1L supports the repression of an anti-proliferative, plasma cell differentiation program by maintaining expression of the H3K27 methyltransferase Ezh2, the catalytic component of Polycomb Repressor Complex 2 (PRC2). Our findings show that DOT1L is a central modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B cell naivety and GC B cell differentiation.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3554-3564 ◽  
Author(s):  
Anna C. Berardi ◽  
Eric Meffre ◽  
Françoise Pflumio ◽  
Andre Katz ◽  
William Vainchenker ◽  
...  

Abstract Identification of human hematopoietic stem cells and analysis of molecular mechanisms regulating their function require biological assays that permit differentiation in all hematopoietic lineages simultaneously. In this study, we established conditions that permit the joint expression of the B-lymphoid and myeloid potential from cord blood-derived CD34+CD38lowCD19−/CD10− primitive progenitors that lack B-specific markers and transcripts. When cocultured during 6 weeks with the murine stromal cells MS-5 in the absence of exogenous human cytokines, CD34+CD38lowCD19−CD10− cells generated a high number of CD19+ B cells. Virtually all of these cells expressed a CD34−CD10+CD19+cIgM− phenotype of late pro-B cells and transcripts of Pax-5, λ-like, and μ chain were detected. We further show that 7% of CD34+CD38lowCD19− cells from cord blood, when grown individually with MS-5 cells, generated both CD19+ and CD11b+ cells after 6 weeks. Efficient B-cell differentiation was also observed in vivo after transplantation of human cord blood-derived unfractionated mononuclear cells or CD34+CD19+CD10− cells into immune-deficient mice. In contrast to the in vitro situation, all stages of B-cell differentiation were observed in vivo, including pro-B, pre-B, and sIgM+ B cells. Interestingly, human progenitors with the ability to differentiate along both B-lymphoid and granulocytic pathways were also detected among human CD34+CD38low cells in the marrow of chimeric mice 6 to 7 weeks after transplantation. Both in vitro and in vivo systems will offer an invaluable tool to further identify the lymphoid and myeloid potentialities of primitive progenitor cells isolated from fetal as well as adult human hematopoietic tissues and characterize stromal-derived signals that regulate their function.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3554-3564 ◽  
Author(s):  
Anna C. Berardi ◽  
Eric Meffre ◽  
Françoise Pflumio ◽  
Andre Katz ◽  
William Vainchenker ◽  
...  

Identification of human hematopoietic stem cells and analysis of molecular mechanisms regulating their function require biological assays that permit differentiation in all hematopoietic lineages simultaneously. In this study, we established conditions that permit the joint expression of the B-lymphoid and myeloid potential from cord blood-derived CD34+CD38lowCD19−/CD10− primitive progenitors that lack B-specific markers and transcripts. When cocultured during 6 weeks with the murine stromal cells MS-5 in the absence of exogenous human cytokines, CD34+CD38lowCD19−CD10− cells generated a high number of CD19+ B cells. Virtually all of these cells expressed a CD34−CD10+CD19+cIgM− phenotype of late pro-B cells and transcripts of Pax-5, λ-like, and μ chain were detected. We further show that 7% of CD34+CD38lowCD19− cells from cord blood, when grown individually with MS-5 cells, generated both CD19+ and CD11b+ cells after 6 weeks. Efficient B-cell differentiation was also observed in vivo after transplantation of human cord blood-derived unfractionated mononuclear cells or CD34+CD19+CD10− cells into immune-deficient mice. In contrast to the in vitro situation, all stages of B-cell differentiation were observed in vivo, including pro-B, pre-B, and sIgM+ B cells. Interestingly, human progenitors with the ability to differentiate along both B-lymphoid and granulocytic pathways were also detected among human CD34+CD38low cells in the marrow of chimeric mice 6 to 7 weeks after transplantation. Both in vitro and in vivo systems will offer an invaluable tool to further identify the lymphoid and myeloid potentialities of primitive progenitor cells isolated from fetal as well as adult human hematopoietic tissues and characterize stromal-derived signals that regulate their function.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 204 ◽  
Author(s):  
Cornelia Barnowski ◽  
Nicole Kadzioch ◽  
Dominik Damm ◽  
Huimin Yan ◽  
Vladimir Temchura

The great advantage of virus-like particle (VLP) nano-vaccines is their structural identity to wild-type viruses, ensuring that antigen-specific B-cells encounter viral proteins in their natural conformation. “Wild-type” viral nanoparticles can be further genetically or biochemically functionalized with biomolecules (antigens and adjuvants). Flagellin is a potent inducer of innate immunity and it has demonstrated adjuvant effectiveness due to its affinity for toll-like receptor 5 (TLR5). In contrast to most TLR ligands, flagellin is a protein and can induce an immune response against itself. To avoid side-effects, we incorporated a less inflammatory and less immunogenic form of flagellin as an adjuvant into HIV-based nanoparticle B-cell-targeting vaccines that display either the HIV-1 envelope protein (Env) or a model antigen, hen egg lysozyme (HEL). While flagellin significantly enhanced HEL-specific IgG responses, anti-Env antibody responses were suppressed. We demonstrated that flagellin did not activate B-cells directly in vitro, but might compete for CD4+ T-cell help in vivo. Therefore, we hypothesize that in the context of VLP-based B-cell nano-vaccines, flagellin serves as an antigen itself and may outcompete a less immunogenic antigen with its antibody response. In contrast, in combination with a strong immunogen, the adjuvant activity of flagellin may dominate over its immunogenicity.


Sign in / Sign up

Export Citation Format

Share Document