scholarly journals A diarrheal pathogen, enteropathogenic Escherichia coli (EPEC), triggers a flux of inositol phosphates in infected epithelial cells.

1994 ◽  
Vol 179 (3) ◽  
pp. 993-998 ◽  
Author(s):  
V Foubister ◽  
I Rosenshine ◽  
B B Finlay

Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that causes diarrhea in infants by adhering to intestinal epithelial cells. EPEC induces host cell protein phosphorylation and increases intracellular calcium levels that may function to initiate cytoskeletal rearrangement. We found that EPEC triggers the release of inositol phosphates (IPs) after adherence of bacteria to cultured epithelial cells. We also demonstrated that the EPEC-induced flux of IPs precedes actin rearrangement and bacterial invasion. EPEC mutants and tyrosine protein kinase inhibitors were used to establish that formation of IPs is dependent on tyrosine phosphorylation of a 90-kD HeLa protein. Collectively these results suggest that EPEC-induced tyrosine phosphorylation of a host cell substrate(s) leads to release of IPs, which may then trigger cytoskeletal rearrangement.

2003 ◽  
Vol 71 (3) ◽  
pp. 1396-1404 ◽  
Author(s):  
Peter J. M. Ceponis ◽  
Derek M. McKay ◽  
Joyce C. Y. Ching ◽  
Perpetual Pereira ◽  
Philip M. Sherman

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a clinically important bacterial enteropathogen that manipulates a variety of host cell signal transduction cascades to establish infection. However, the effect of EHEC O157:H7 on Jak/Stat signaling is unknown. To define the effect of EHEC infection on epithelial gamma interferon (IFN-γ)-Stat1 signaling, human T84 and HEp-2 epithelial cells were infected with EHEC O157:H7 and then stimulated with recombinant human IFN-γ. Cells were also infected with different EHEC strains, heat-killed EHEC, enteropathogenic E. coli (EPEC) O127:H6, and the commensal strain E. coli HB101. Nuclear and whole-cell protein extracts were prepared and were assayed by an electrophoretic mobility shift assay (EMSA) and by Western blotting, respectively. Cells were also processed for immunofluorescence to detect the subcellular localization of Stat1. The EMSA revealed inducible, but not constitutive, Stat1 activation upon IFN-γ treatment of both cell lines. The EMSA also showed that 6 h of EHEC O157:H7 infection, but not 30 min of EHEC O157:H7 infection, prevented subsequent Stat1 DNA binding induced by IFN-γ, whereas infection with EPEC did not. Immunoblotting showed that infection with EHEC, but not infection with EPEC, eliminated IFN-γ-induced Stat1 tyrosine phosphorylation in both dose- and time-dependent fashions and disrupted inducible protein expression of the Stat1-dependent gene interferon regulatory factor 1. Immunofluorescence revealed that EHEC infection did not prevent nuclear accumulation of Stat1 after IFN-γ treatment. Also, Stat1 tyrosine phosphorylation was suppressed by different EHEC isolates, including intimin-, type III secretion- and plasmid-deficient strains, but not by HB101 and heat-killed EHEC. These findings indicate the novel disruption of host cell signaling caused by EHEC infection but not by EPEC infection.


1995 ◽  
Vol 9 (1) ◽  
pp. 31-36 ◽  
Author(s):  
B.B. Finlay

The interactions that occur between pathogenic micro-organisms and their host cells are complex and intimate. We have used two enteric pathogens, Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC), to examine the interactions that occur between these organisms and epithelial cells. Although these are enteric pathogens, the knowledge and techniques developed from these systems may be applied to the study of dental pathogens. Both S. typhimurium and EPEC disrupt epithelial monolayer integrity, although by different mechanisms. Both pathogens cause loss of microvilli and re-arrangement of the underlying host cytoskeleton. Despite these similarities, both organisms send different signals into the host cell. EPEC signal transduction involves generation of intracellular calcium and inositol phosphate fluxes, and activation of host tyrosine kinases that results in tyrosine phosphorylation of a 90-kDa host protein. Bacterial mutants have been identifed that are deficient in signaling to the host. We propose a sequence of events that occur when EPEC interacts with epithelial cells. Once inside a host cell, S. typhimurium remains within a vacuole. To define some of the parameters of the intracellular environment, we constructed genetic fusions of known genes with lacZ, and used these fusions as reporter probes of the intracellular vacuolar environment. We have also begun to examine the bacterial and host cell factors necessary for S. typhimurium to multiply within epithelial cells. We found that this organism triggers the formation of novel tubular lysosomes, and these structures are linked with intracellular replication.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 531-540 ◽  
Author(s):  
Narveen Jandu ◽  
Zoë Jingjing Zeng ◽  
Kathene C. Johnson-Henry ◽  
Philip M. Sherman

Enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 inhibits interferon (IFN)-γ-stimulated tyrosine phosphorylation of signal transducer and activator of transcription (STAT)-1 in epithelial cells. We determined the effects of probiotics on EHEC-mediated disruption of IFN-γ-stimulated STAT-1 activation in epithelial cell lines. Confluent Intestine 407, HEp-2 and Caco-2 epithelial cells were pre-treated (3 h) with either probiotics or surface-layer proteins derived from Lactobacillus helveticus R0052 prior to infection with EHEC O157 : H7 strain CL56 (m.o.i. 100 : 1, 6 h, 37 °C in 5 % CO2). Subsequently, cells were washed and stimulated with human recombinant IFN-γ (50 ng ml−1, 0.5 h, 37 °C) followed by whole-cell protein extraction and immunoblotting for tyrosine-phosphorylated STAT-1. Relative to uninfected cells, STAT-1-activation was reduced after EHEC O157 : H7 infection. Pre-incubation with the probiotic L. helveticus R0052 followed by EHEC infection abrogated pathogen-mediated disruption of IFN-γ–STAT-1 signalling. As determined using Transwell inserts, probiotic-mediated protection was independent of epithelial cell contact. In contrast, pre-incubation with boiled L. helveticus R0052, an equal concentration of viable Lactobacillus rhamnosus R0011, or surface-layer proteins (0.14 mg ml−1) did not restore STAT-1 signalling in EHEC-infected cells. The viable probiotic agent L. helveticus R0052 prevented EHEC O157 : H7-mediated subversion of epithelial cell signal transduction responses.


Sign in / Sign up

Export Citation Format

Share Document