scholarly journals Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles.

1994 ◽  
Vol 180 (2) ◽  
pp. 545-555 ◽  
Author(s):  
A Moretta ◽  
M Vitale ◽  
S Sivori ◽  
C Bottino ◽  
L Morelli ◽  
...  

GL183 or EB6 (p58) molecules have been shown to function as receptors for different HLA-C alleles and to deliver an inhibitory signal to natural killer (NK) cells, thus preventing lysis of target cells. In this study, we analyzed a subset of NK cells characterized by a p58-negative surface phenotype. We show that p58-negative clones, although specific for class I molecules do not recognize HLA-C alleles. In addition, by the use of appropriate target cells transfected with different HLA-class I alleles we identified HLA-B7 as the protective element recognized by a fraction of p58-negative clones. In an attempt to identify the receptor molecules expressed by HLA-B7-specific clones, monoclonal antibodies (mAbs) were selected after mice immunization with such clones. Two of these mAbs, termed XA-88 and XA-185, and their F(ab')2 fragments, were found to reconstitute lysis of B7+ target cells by B7-specific NK clones. Both mAbs were shown to be directed against the recently clustered Kp43 molecule (CD94). Thus, mAb-mediated masking of Kp43 molecules interferes with recognition of HLA-B7 and results in target cell lysis. Moreover, in a redirected killing assay, the cross-linking of Kp43 molecules mediated by the XA185 mAb strongly inhibited the cytolytic activity of HLA-B7-specific NK clones, thus mimicking the functional effect of B7 molecules. Taken together, these data strongly suggest that Kp43 molecules function as receptors for HLA-B7 and that this receptor/ligand interaction results in inhibition of the NK-mediated cytolytic activity. Indirect immunofluorescence and FACS analysis of a large number of random NK clones showed that Kp43 molecules (a) were brightly expressed on a subset of p58-negative clones, corresponding to those specific for HLA-B7; (b) displayed a medium/low fluorescence in the p58-negative clones that are not B7-specific as well as in most p58+ NK clones; and (c) were brightly expressed as in the p58+ clone ET34 (GL183-/EB6+, Cw4-specific). Functional analysis revealed that Kp43 functioned as an inhibitory receptor only in NK clones displaying bright fluorescence. These studies also indicate that some NK clones (e.g., the ET34) can coexpress two distinct receptors (p58 and Kp43) for different class I alleles (Cw4 and B7). Finally, we show that Kp43 molecules function as receptors only for some HLA-B alleles and that still undefined receptor(s) must exist for other HLA-B alleles including B27.

1999 ◽  
Vol 189 (7) ◽  
pp. 1093-1100 ◽  
Author(s):  
Sumati Rajagopalan ◽  
Eric O. Long

Human natural killer (NK) cells express several killer cell immunoglobulin (Ig)-like receptors (KIRs) that inhibit their cytotoxicity upon recognition of human histocompatibility leukocyte antigen (HLA) class I molecules on target cells. Additional members of the KIR family, including some that deliver activation signals, have unknown ligand specificity and function. One such KIR, denoted KIR2DL4, is structurally divergent from other KIRs in the configuration of its two extracellular Ig domains and of its transmembrane and cytoplasmic domains. Here we show that recombinant soluble KIR2DL4 binds to cells expressing HLA-G but not to cells expressing other HLA class I molecules. Unlike other HLA class I–specific KIRs, which are clonally distributed on NK cells, KIR2DL4 is expressed at the surface of all NK cells. Furthermore, functional transfer of KIR2DL4 into the cell line NK-92 resulted in inhibition of lysis of target cells that express HLA-G, but not target cells that express other class I molecules including HLA-E. Therefore, given that HLA-G expression is restricted to fetal trophoblast cells, KIR2DL4 may provide important signals to maternal NK decidual cells that interact with trophoblast cells at the maternal–fetal interface during pregnancy.


1998 ◽  
Vol 187 (5) ◽  
pp. 813-818 ◽  
Author(s):  
Francisco Borrego ◽  
Matthias Ulbrecht ◽  
Elisabeth H. Weiss ◽  
John E. Coligan ◽  
Andrew G. Brooks

Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical HLA class I molecule, the gene for which is transcribed in most tissues. It has recently been reported that this molecule binds peptides derived from the signal sequence of HLA class I proteins; however, no function for HLA-E has yet been described. We show that natural killer (NK) cells can recognize target cells expressing HLA-E molecules on the cell surface and this interaction results in inhibition of the lytic process. Furthermore, HLA-E recognition is mediated primarily through the CD94/NKG2-A heterodimer, as CD94-specific, but not killer cell inhibitory receptor (KIR)–specific mAbs block HLA-E–mediated protection of target cells. Cell surface HLA-E could be increased by incubation with synthetic peptides corresponding to residues 3–11 from the signal sequences of a number of HLA class I molecules; however, only peptides which contained a Met at position 2 were capable of conferring resistance to NK-mediated lysis, whereas those having Thr at position 2 had no effect. Interestingly, HLA class I molecules previously correlated with CD94/NKG2 recognition all have Met at residue 4 of the signal sequence (position 2 of the HLA-E binding peptide), whereas those which have been reported not to interact with CD94/NKG2 have Thr at this position. Thus, these data show a function for HLA-E and suggest an alternative explanation for the apparent broad reactivity of CD94/NKG2 with HLA class I molecules; that CD94/NKG2 interacts with HLA-E complexed with signal sequence peptides derived from “protective” HLA class I alleles rather than directly interacting with classical HLA class I proteins.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2997-2997
Author(s):  
Sonja J. Verheyden ◽  
Michel Bernier ◽  
Christian J. Demanet

Abstract Introduction: Natural Killer (NK) cells play a key role in defense against tumor cells that have the capacity to downregulate Human Leukocyte Antigen (HLA) class I expression. It has been reported that leukemic cells can have down-regulated expression of HLA class I molecules. Apparently, the NK cells of these patients are not able to destroy these leukemic cells and may allow malignant cells to escape from innate immune control. This failure may be due to the fact that NK cells are part of the malignant clone and therefore might have a decreased function. An alternative hypothesis could be that these patients may display a NK cell Receptor (NKR) genotype incapable of destroying leukemic cells with aberrant expression of HLA class I molecules. The polymorphic nature of the NKR genes generates diverse repertoires in the human population, which display specificity in the innate immune response. Materials and Methods: In the present study, 11 Killer cell Immunoglobulin-like Receptor (KIRs) and 2 CD94/NKG2 receptors were genotyped by PCR-SSP in 96 leukemic patients and 148 healthy Caucasians. Results and Conclusion: We report a significant increased frequency of the more inhibitory AB KIR phenotype in leukemic patients compared to the controls (31.1% in healthy controls vs. 51.0% in leukemic patients, Pc = 0.002), which is related to the high prevalence of the inhibitory KIR2DL2 in this population (Pc = 0.007). Moreover, two specific KIR phenotypes AB1 and AB9, including all inhibitory KIRs, were significantly associated with leukemic patients. Our study suggests that an important percentage of leukemic patients express a KIR phenotype in favor of escape from NK cell immunity.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3841-3841 ◽  
Author(s):  
Daisuke Suzuki ◽  
Naoshi Sugimoto ◽  
Norihide Yoshikawa ◽  
Hiroshi Endo ◽  
Sou Nakamura ◽  
...  

Abstract Background Platelet transfusion refractoriness (PTR) due to immune factors occurs in 5-15% of thrombocytopenic patients who have received transfusions. The dominant cause of immune PTR is the production of allo-antibodies to human leukocyte antigen (HLA) class I, which is expressed on platelets. In current clinical settings, transfusion of HLA-compatible platelets is the only practical strategy, but their supply is weak due to limited donor source, gives excessive burden on specific donors, and requires increased efforts and costs. To overcome these issues, we plan to produce HLA-knockout platelets from iPSCs-derived megakaryocytes (MKs) as an alternative solution, applicable to all HLA types. However, whether they would be attacked by natural killer (NK) cells has not been well-studied. NK cells are known to show cytotoxic activity against cells downregulated for HLA class I ("missing self" theory). Therefore we assessed the interaction between HLA-knockout platelets derived from induced pluripotent stem cells (iPSCs) and NK cells in allogeneic settings. Methods and Results Immortalized megakaryocyte progenitor cell lines (imMKCLs) were previously established from iPSCs as a source of platelet production with a robust proliferation potential (Nakamura, 2014). Beta 2-microglobulin gene was knocked-out by CRISPR/Cas9 system to obtain HLA-knockout imMKCLs and platelets. NK cells were prepared from peripheral blood of eleven healthy donors. After co-cultures of NK cells and target cells for 6 hours with IL-2, we examined the NK cell cytolytic activity marker CD107, and target cell damage marker Annexin V using flow cytometry. Positive rates of both markers were not enhanced by co-culture with either HLA-expressed or HLA-knockout platelets for all donors. Furthermore, addition of platelets showed minimal effect on high cytotoxic activity of NK cells against K562 cells. In contrast, coculture of imMKCLs with NK cells resulted in higher detection of CD107 and Annexin V staining in some NK cell donors. These data suggested that platelets are immunologically inert for NK cells irrespective of class I HLA expression, while imMKCLs can be potentially attacked. Accordingly, platelets did not express NK cell activating ligands, which were expressed on imMKCLs and K562 cells. To confirm the above-mentioned results in vivo, mice were transfused with NK cells and platelets and MKs together. In our preliminary data, the circulation of platelets was not different between HLA-expressed or HLA-knockout type. In contrast, MKs were shown to be attacked in some cases. Conclusion HLA-knockout platelets evaded attacked from NK cells, while imMKCLs possessed immunogenicity to NK cells. This study provides extended experimental evidence that HLA-knockout platelets produced from a single imMKCL clone are immunologically applicable to all HLA types including majority of patients with PTR. On the other hand, contaminating imMKCLs in imMKCL-derived platelet products can be rejected by NK cells, contributing to their enhanced safety profiles. Taken together, stage of HLA-deficiency in imMKCLs as a starting material of platelet supply shall lead to industrial production of HLA universal platelets. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1484-1490 ◽  
Author(s):  
Grazia Maria Spaggiari ◽  
Andrea Capobianco ◽  
Stelvio Becchetti ◽  
Maria Cristina Mingari ◽  
Lorenzo Moretta

In recent years, mesenchymal stem cells (MSCs) have been shown to inhibit T-lymphocyte proliferation induced by alloantigens or mitogens. However, no substantial information is available regarding their effect on natural killer (NK) cells. Here we show that MSCs sharply inhibit IL-2-induced proliferation of resting NK cells, whereas they only partially affect the proliferation of activated NK cells. In addition, we show that IL-2-activated NK cells (but not freshly isolated NK cells) efficiently lyse autologous and allogeneic MSCs. The activating NK receptors NKp30, NKG2D, and DNAM-1 represented the major receptors responsible for the induction of NK-mediated cytotoxicity against MSCs. Accordingly, MSCs expressed the known ligands for these activating NK receptors—ULBPs, PVR, and Nectin-2. Moreover, NK-mediated lysis was inhibited when IFN-γ-exposed MSCs were used as target cells as a consequence of the up-regulation of HLA class I molecules at the MSC surface. The interaction between NK cells and MSCs resulted not only in the lysis of MSCs but also in cytokine production by NK cells. These results should be taken into account when evaluating the possible use of MSCs in novel therapeutic strategies designed to improve engraftment or to suppress graft-versus-host disease (GVHD) in bone marrow transplantation.


2000 ◽  
Vol 28 (2) ◽  
pp. 196-198 ◽  
Author(s):  
Y. W. Loke ◽  
A. King

At the implantation site, the uterine mucosa (decidua) is infiltrated by large numbers of natural killer (NK) cells. These NK cells are in close contact with the invading fetal trophoblast and we have proposed that they might be the effector cells that control the implantation of the allogeneic placenta. Recent characterization of NK cell receptors and their HLA class I ligands has suggested potential mechanisms by which NK cells might interact with trophoblast. However, what happens as a result of this interaction is not clear. The traditional method for investigating NK cell function in vitro is the protection from lysis of target cells by expression of HLA class I antigens. This might not be an accurate reflection of what happens in vivo. Another function of NK cells is the production of cytokines on contact with target cells. This could be an important outcome of the interaction between decidual NK cells and trophoblast. Decidual NK cells are known to produce a variety of cytokines; trophoblast cells express receptors for many of these cytokines, indicating that they can potentially respond. In this way, decidual NK cells have a significant influence on trophoblast behaviour during implantation.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1725-1736 ◽  
Author(s):  
D Zarcone ◽  
EF Prasthofer ◽  
F Malavasi ◽  
V Pistoia ◽  
AF LoBuglio ◽  
...  

In this study we describe characteristic ultrastructural changes of CD3- large granular lymphocytes (LGL), ie, natural killer (NK) cells, following stimulation with recombinant (r) interleukin 2 (IL 2) or r- gamma interferon (r-gamma IFN) and after interaction with K562 target cells (TC) or Sepharose-bound anti-Fc gamma receptor (FcR) monoclonal antibody (MoAb). When compared to resting cells the cytolytic activity of r-IL 2- and r-gamma IFN-stimulated cells against K562 TC was enhanced. The r-IL 2-stimulated LGL were larger and consistently displayed the shape and cytoskeletal rearrangement characteristic of activated cells. The Golgi apparatus was expanded, and the number of electron-dense granules and vesicles was increased. The ultrastructural changes in r-gamma IFN-stimulated LGL were markedly different from those observed following r-IL 2 activation. Cells did not exhibit changes in size, shape, cytoskeletal organization, or in the structure of the Golgi apparatus. However, r-gamma IFN-stimulated cells exhibited distinctive changes in the structure and content of electron-dense granules with deaggregation of the matrix and parallel tubular arrays (PTAs). Within organelles apparently derived from the electron-dense granules, vesicular and tubular structures were noted that may be the morphological equivalent of cytotoxic factors produced by cytolytic effector cells. These ultrastructural observations indicate that r-IL 2 and r-gamma IFN enhance the lytic ability of NK cells by acting on distinct cell machineries. The cytolytic ability was decreased when LGL were pretreated with K562 TC or immobilized anti-FcR antibody. In both experimental conditions cells displayed ultrastructural features indicating activation as well as loss of cytoplasmic granules and other Golgi-derived organelles. Stimulation of r-gamma IFN- or r-IL 2- activated LGL with K562 TC or Sepharose-bound anti-FcR antibody decreased their cytolytic ability, with cells depleted of granules at the ultrastructural level. Intracytoplasmic fusion of granules and a massive release of the granule content were found in r-IL 2-stimulated cells, reminiscent of the mechanism of basophil degranulation. These observations suggest that multiple activation signals involving distinct surface membrane molecules induce release of cytolytic factors by both resting and activated NK cells.


1996 ◽  
Vol 183 (4) ◽  
pp. 1817-1827 ◽  
Author(s):  
J E Gumperz ◽  
N M Valiante ◽  
P Parham ◽  
L L Lanier ◽  
D Tyan

Natural killer (NK) cells that express the NKB1 receptor are inhibited from killing target cells that possess human histocompatibility leukocyte antigen (HLA) B molecules bearing the Bw4 serological epitope. To investigate whether NKB1 expression is affected by HLA type, peripheral blood lymphocytes of 203 HLA-typed donors were examined. Most donors had a single population of NKB1+ cells, but some had two populations expressing different cell surface levels of NKB1, and others had no detectable NKB1+ cells. Among the donors expressing NKB1, both the relative abundance of NKB1+ NK cells and their level of cell surface expression varied substantially. The percentage of NKB1+ NK cells ranged from 0 to >75% (mean 14.7%), and the mean fluorescence of the positive population varied over three orders of magnitude. For each donor, the small percentage of T cells expressing NKB1 (usually <2%), had a pattern of expression mirroring that of the NK cells. NKB1 expression by NK and T cells remained stable over the 2-yr period that five donors were tested. Patterns of NKB1 expression were not associated with Bw4 or Bw6 serotype of the donor or with the presence of any individual HLA-A or -B antigens. Cells expressing NKB1 are often found in donors who do not possess an appropriate class I ligand, and can be absent in those who express Bw4+ HLA-B antigens. Family studies further suggested that the phenotype of NKB1 expression is inherited but not HLA linked. Whereas identical twins show matching patterns of NKB1 expression, HLA-identical siblings can differ in NKB1 expression, and conversely, HLA-disparate siblings can be similar. Thus NKB1 expression phenotypes are tightly regulated and extremely heterogeneous, but not correlated with HLA type.


Sign in / Sign up

Export Citation Format

Share Document