scholarly journals Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages.

1995 ◽  
Vol 182 (2) ◽  
pp. 409-418 ◽  
Author(s):  
H Bouharoun-Tayoun ◽  
C Oeuvray ◽  
F Lunel ◽  
P Druilhe

The relevance of the antibody-dependent cellular inhibition (ADCI) of Plasmodium falciparum to clinical protection has been previously established by in vitro studies of material obtained during passive transfer of protection by immunoglobulin G in humans. We here report further in vitro investigations aimed at elucidating the mechanisms underlying this ADCI effect. Results obtained so far suggest that (a) merozoite uptake by monocytes (MN) as well as by polymorphonuclear cells has little influence on the course of parasitemia; (b) the ADCI effect is mediated by a soluble factor released by MN; (c) this or these factors are able to block the division of surrounding intraerythrocytic parasites at the one nucleus stage; (d) the critical triggering antigen(s) targeted by effective Abs would appear to be associated with the surface of merozoites, as opposed to that of infected red blood cells; (e) the MN receptor for Abs effective in ADCI is apparently Fc gamma RII, and not RI; (f) MN function is up- and down-regulated by interferon-gamma and interleukin 4, respectively; and (g) of several potential mediators released by MN, only tumor necrosis factor (TNF) proved of relevance. The involvement of TNF in defense may explain the recently described increased frequency of the TNF-2 high-expression promoter in individuals living in endemic regions despite its compromising role in severe malaria.

Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bethel Kwansa-Bentum ◽  
Kojo Agyeman ◽  
Jeffrey Larbi-Akor ◽  
Claudia Anyigba ◽  
Regina Appiah-Opong

Background. Malaria is one of the most important life-threatening infectious diseases in the tropics. In spite of the effectiveness of artemisinin-based combination therapy, reports on reduced sensitivity of the parasite to artemisinin in Cambodia and Thailand warrants screening for new potential antimalarial drugs for future use. Ghanaian herbalists claim that Polyalthia longifolia has antimalarial activity. Therefore, antiplasmodial activity, cytotoxic effects, and antioxidant and phytochemical properties of P. longifolia leaf extract were investigated in this study. Methodology/Principal Findings. Aqueous, 70% hydroethanolic and ethyl acetate leaf extracts were prepared using standard procedures. Antiplasmodial activity was assessed in vitro by using chloroquine-sensitive malaria parasite strain NF54. The SYBR® Green and tetrazolium-based calorimetric assays were used to measure parasite growth inhibition and cytotoxicity, respectively, after extract treatment. Total antioxidant activity was evaluated using a free radical scavenging assay. Results obtained showed that extracts protected red blood cells against Plasmodium falciparum mediated damage. Fifty percent inhibitory concentration (IC50) values were 24.0±1.08 μg/ml, 22.5±0.12 μg/ml, and 9.5±0.69 μg/ml for aqueous, hydroethanolic, and ethyl acetate extracts, respectively. Flavonoids, tannins, and saponins were present in the hydroethanolic extract, whereas only the latter was observed in the aqueous extract. Aqueous and hydroethanolic extracts showed stronger antioxidant activities compared to the ethyl acetate extract. Conclusions/Significance. The extracts of P. longifolia have antiplasmodial properties and low toxicities to human red blood cells. The extracts could be developed as useful alternatives to antimalarial drugs. These results support claims of the herbalists that decoctions of P. longifolia are useful antimalarial agents.


2006 ◽  
Vol 74 (1) ◽  
pp. 645-653 ◽  
Author(s):  
Samuel C. Wassmer ◽  
Valéry Combes ◽  
Francisco J. Candal ◽  
Irène Juhan-Vague ◽  
Georges E. Grau

ABSTRACT Brain lesions of cerebral malaria (CM) are characterized by a sequestration of Plasmodium falciparum-parasitized red blood cells (PRBC) and platelets within brain microvessels, as well as by blood-brain barrier (BBB) disruption. In the present study, we evaluated the possibility that PRBC and platelets induce functional alterations in brain endothelium. In a human brain endothelial cell line, named HBEC-5i, exhibiting most of the features demanded for a pathophysiological study of BBB, tumor necrosis factor (TNF) or lymphotoxin α (LT-α) reduced transendothelial electrical resistance (TEER), enhanced the permeability to 70-kDa dextran, and increased the release of microparticles, a recently described indicator of disease severity in CM patients. In vitro cocultures showed that platelets or PRBC can have a direct cytotoxic effect on activated, but not on resting, HBEC-5i cells. Platelet binding was required, as platelet supernatant had no effect. Furthermore, platelets potentiated the cytotoxicity of PRBC for TNF- or LT-α-activated HBEC-5i cells when they were added prior to these cells on the endothelial monolayers. This effect was not observed when platelets were added after PRBC. Both permeability and TEER were strongly affected, and the apoptosis rate of HBEC-5i cells was dramatically increased. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM.


2001 ◽  
Vol 69 (2) ◽  
pp. 1084-1092 ◽  
Author(s):  
Tony Triglia ◽  
Jenny Thompson ◽  
Sonia R. Caruana ◽  
Mauro Delorenzi ◽  
Terry Speed ◽  
...  

ABSTRACT Plasmodium falciparum infections can be fatal, whileP. vivax infections usually are not. A possible factor involved in the greater virulence of P. falciparum is that this parasite grows in red blood cells (RBCs) of all maturities whereasP. vivax is restricted to growth in reticulocytes, which represent only approximately 1% of total RBCs in the periphery. Two proteins, expressed at the apical end of the invasive merozoite stage from P. vivax, have been implicated in the targeting of reticulocytes for invasion by this parasite. A search of the P. falciparum genome databases has identified genes that are homologous to the P. vivax rbp-1 and -2 genes. Two of these genes are virtually identical over a large region of the 5′ end but are highly divergent at the 3′ end. They encode high-molecular-mass proteins of >300 kDa that are expressed in late schizonts and localized to the apical end of the merozoite. To test a potential role in merozoite invasion of RBCs, we analyzed the ability of these proteins to bind to mature RBCs and reticulocytes. No binding to mature RBCs or cell preparations enriched for reticulocytes was detected. We identified a parasite clone that lacks the gene for one of these proteins, showing that the gene is not required for normal in vitro growth. Antibodies to these proteins can inhibit merozoite invasion of RBCs.


2003 ◽  
Vol 47 (8) ◽  
pp. 2636-2639 ◽  
Author(s):  
Nassira Mahmoudi ◽  
Liliane Ciceron ◽  
Jean-François Franetich ◽  
Khemais Farhati ◽  
Olivier Silvie ◽  
...  

ABSTRACT The in vitro activities of 25 quinolones and fluoroquinolones against erythrocytic stages of Plasmodium falciparum and against liver stages of Plasmodium yoelii yoelii and P. falciparum were studied. All compounds were inhibitory for chloroquine-sensitive and chloroquine-resistant P. falciparum grown in red blood cells. This inhibitory effect increased with prolonged incubation and according to the logarithm of the drug concentration. Grepafloxacin, trovafloxacin, and ciprofloxacin were the most effective drugs, with 50% inhibitory concentrations of <10 μg/ml against both strains. Only grepafloxacin, piromidic acid, and trovafloxacin had an inhibitory effect against hepatic stages of P. falciparum and P. yoelii yoelii; this effect combined reductions of the numbers and the sizes of schizonts in treated cultures. Thus, quinolones have a potential for treatment or prevention of malaria through their unique antiparasitic effect against erythrocytic and hepatic stages of Plasmodium.


Sign in / Sign up

Export Citation Format

Share Document