scholarly journals Disruption of T Cell Homeostasis in Mice Expressing a T Cell–Specific Dominant Negative Transforming Growth Factor β II Receptor

2000 ◽  
Vol 191 (7) ◽  
pp. 1187-1196 ◽  
Author(s):  
Philip J. Lucas ◽  
Seong-Jin Kim ◽  
Spencer J. Melby ◽  
Ronald E. Gress

The immune system, despite its complexity, is maintained at a relative steady state. Mechanisms involved in maintaining lymphocyte homeostasis are poorly understood; however, recent availability of transgenic (Tg) and knockout mouse models with altered balance of lymphocyte cell populations suggest that cytokines play a major role in maintaining lymphocyte homeostasis. We show here that transforming growth factor (TGF)-β plays a critical role in maintaining CD8+ T cell homeostasis in a Tg mouse model that specifically overexpresses a dominant negative TGF-β II receptor (DNRII) on T cells. DNRII T cell Tg mice develop a CD8+ T cell lymphoproliferative disorder resulting in the massive expansion of the lymphoid organs. These CD8+ T cells are phenotypically “naive” except for the upregulation of the cell surface molecule CD44, a molecule usually associated with memory T cells. Despite their dominance in the peripheral lymphoid organs, CD8+ T cells appear to develop normally in the thymus, suggesting that TGF-β exerts its homeostatic control in the peripheral immune system.

2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


2020 ◽  
Author(s):  
Soumya Chatterjee ◽  
Annesha Chatterjee ◽  
Samir Jana ◽  
Subhasis Dey ◽  
Himansu Roy ◽  
...  

Abstract Tumor cells promote immune evasion through upregulation of programmed death-ligand 1 (PD-L1) that binds with programmed cell death protein 1 (PD1) on cytotoxic T cells and promote dysfunction. Though therapeutic efficacy of anti-PD1 antibody has remarkable effects on different type of cancers it is less effective in breast cancer (BC). Hence, more details understanding of PD-L1-mediated immune evasion is necessary. Here, we report BC cells secrete extracellular vesicles in form of exosomes carry PD-L1 and are highly immunosuppressive. Transforming growth factor beta (TGF-β) present in tumor microenvironment orchestrates BC cell secreted exosomal PD-L1 load. Circulating exosomal PD-L1 content is highly correlated with tumor TGF-β level. The later also found to be significantly associated with CD8+CD39+, CD8+PD1+ T-cell phenotype. Recombinant TGF-β1 dose dependently induces PD-L1 expression in Texos in vitro and blocking of TGF-β dimmed exosomal PD-L1 level. PD-L1 knocked down exosomes failed to suppress effector activity of activated CD8 T cells like tumor exosomes. While understanding its effect on T-cell receptor signaling, we found siPD-L1 exosomes failed to block phosphorylation of src family proteins, linker for activation of T cells and phosphoinositide phospholipase Cγ of CD8 T cells more than PD-L1 exosomes. In vivo inhibition of exosome release and TGF-β synergistically attenuates tumor burden by promoting Granzyme and interferon gamma release in tumor tissue depicting rejuvenation of exhausted T cells. Thus, we establish TGF-β as a promoter of exosomal PD-L1 and unveil a mechanism that tumor cells follow to promote CD8 T-cell dysfunction.


2001 ◽  
Vol 194 (8) ◽  
pp. 1187-1194 ◽  
Author(s):  
James P. Lodolce ◽  
Patrick R. Burkett ◽  
David L. Boone ◽  
Marcia Chien ◽  
Averil Ma

Cytokine driven or “bystander” proliferation of T cells occurs in vivo independently of major histocompatibility complex–T cell receptor interactions. This process may be important for supporting T cell homeostasis and facilitating T cell responses to microbial antigens, and may involve the cytokine interleukin (IL)-15. In this study, we find that IL-15Rα–deficient (IL-15Rα−/−) mice fail to undergo poly I:C or IL-15 driven bystander proliferation of CD8+ T cells. Surprisingly, IL-15Rα−/− CD8+ T cells proliferate in response to poly I:C when adoptively transferred into normal mice, and normal CD8+ T cells fail to proliferate in IL-15Rα−/− mice. Normal mice reconstituted with IL-15Rα−/− bone marrow cells also fail to exhibit bystander responses. Thus, CD8+ T cell independent IL-15Rα signals from radiation sensitive hematopoietic cells are likely required for bystander responses. Moreover, normal CD8+ T cells proliferate in IL-15Rα−/− mice after treatment with IL-15. Therefore, IL-15Rα signals may mediate a positive feedback loop involving the further physiological production of IL-15. These findings provide new insights into how IL-15Rα supports memory phenotype CD8+ T cell proliferation, and suggest novel mechanisms by which memory CD8+ T cells are maintained in vivo.


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4546-4554 ◽  
Author(s):  
Spencer W. Stonier ◽  
Lisa J. Ma ◽  
Eliseo F. Castillo ◽  
Kimberly S. Schluns

AbstractInterleukin-15 (IL-15) is crucial for the development of naive and memory CD8 T cells and is delivered through a mechanism called transpresentation. Previous studies showed that memory CD8 T cells require IL-15 transpresentation by an as yet unknown cell of hematopoietic origin. We hypothesized that dendritic cells (DCs) transpresent IL-15 to CD8 T cells, and we examined this by developing a transgenic model that limits IL-15 transpresentation to DCs. In this study, IL-15 transpresentation by DCs had little effect on restoring naive CD8 T cells but contributed to the development of memory-phenotype CD8 T cells. The generation of virus-specific, memory CD8 T cells was partially supported by IL-15Rα+ DCs through the preferential enhancement of a subset of KLRG-1+CD27− CD8 T cells. In contrast, these DCs were largely sufficient in driving normal homeostatic proliferation of established memory CD8 T cells, suggesting that memory CD8 T cells grow more dependent on IL-15 transpresentation by DCs. Overall, our study clearly supports a role for DCs in memory CD8 T-cell homeostasis but also provides evidence that other hematopoietic cells are involved in this function. The identification of DCs fulfilling this role will enable future studies to better focus on mechanisms regulating T-cell homeostasis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lauren Daniel ◽  
Marion Tassery ◽  
Clara Lateur ◽  
Antoine Thierry ◽  
André Herbelin ◽  
...  

Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 867-867
Author(s):  
Federico Simonetta ◽  
Toshihito Hirai ◽  
Juliane K. Lohmeyer ◽  
Kristina Maas-Bauer ◽  
Maite Alvarez ◽  
...  

Chimeric antigen receptor (CAR) T cells have shown impressive results in refractory B-cell malignancies. Unfortunately, to date, commercially available cells, as well as most products tested in clinical trials, are autologous CAR T cells whose widespread use is limited by the logistical and financial burdens related to their ad hoc generation. The development of universal allogeneic CAR T cell products to be used off-the-shelf across MHC-barriers has faced major limitations, namely the risk of Graft-versus-Host-Disease (GvHD) induction and the rejection of the administered cells by the host immune system. Invariant Natural Killer-T (iNKT) cells are innate lymphocytes that are deprived of any GvHD induction potential but that display antitumor effects both directly, through the production of cytotoxic effector molecules, and indirectly, through the enhancement of NK and CD8 T cell-mediated immune responses. Preclinical studies using xenogeneic mouse models have demonstrated the feasibility of using iNKT cells as a platform for CAR-based therapies, and two clinical trials are currently ongoing. In order to study the interaction of CD19-specific iNKT CAR cells with the host immune system, we transduced iNKT cells ex vivo expanded from FVB/N mice with a CAR composed of the variable region cloned from the 1D3 hybridoma recognizing murine CD19 linked to a portion of the murine CD28 molecule and to the cytoplasmic region of the murine CD3-ζ molecule. The cytotoxic potential of CD19-iNKT CAR was confirmed in an in vitro cytotoxic assay against the CD19-expressing A20 lymphoma cell line, revealing a strong, dose dependent cytotoxic effect of CD19-CAR iNKT cells. Accordingly, and similarly to what was previously reported in xenogeneic studies, FVB/N (H-2Kq) derived iNKT CAR (2x10e6 cells iv) significantly improved survival of mice after administration to major histocompatibility complex (MHC)-mismatched, immunodeficient BALB/c (H-2Kd) Rag2-/- gamma-chain-/- mice receiving A20 cells (2x10e4 cells iv; Figure 1A) without inducing any signs of GvHD. To test the efficacy of iNKT CAR cells in the presence of host immune cells, we tested the antitumor activity mediated by iNKT CAR against A20 cells in BALB/c mice receiving sublethal irradiation (4.4 Gy), resulting in only a partial and transient lymphopenia. In this model, the antitumor effect of iNKT CAR cells was greatly enhanced, leading to long-term survival of the great majority of treated mice (Figure 1B). Such a difference in iNKT CAR effect between mice that genetically lacked lymphocytes and mice with only partial lymphopenia suggested the participation of host derived lymphocytes in the antitumor effect. To test the hypothesis that host CD8 T cell activation via cross-priming could at least partially mediate the indirect antitumor effect of iNKT CAR cells, we repeated the experiment, employing as recipients BALB/c BATF3-/- mice, in which CD8 T cell cross-priming is impaired as a result of the absence of BATF3-dependent CD103+ CD8a+ dendritic cells that are thought to present antigens through CD1d to the invariant T cell receptor expressed by iNKT cells. Interestingly, the iNKT CAR effect was partially abrogated in A20-receiving BATF3-/- mice as compared to WT mice (Figure 1C), supporting the hypothesis that the impact of iNKT CAR cells is mediated at least partially by the activation of host CD8 T cells via their cross-priming. To formally demonstrate the synergistic effect between allogeneic iNKT CAR and autologous CD8 T cells, we employed an autologous bone marrow transplantation model, co-administering allogeneic iNKT CAR with autologous CD8 T cells at the time of transfer of T-cell-depleted autologous bone marrow cells and A20 lymphoma cells into lethally irradiated (8.8 Gy) BALB/c recipients. Co-administration of allogeneic iNKT CAR and autologous CD8 T cells resulted in a synergistic effect, significantly extending animal survival (Figure 1D) compared to mice receiving no treatment, as well as to mice receiving either allogeneic iNKT or autologous CD8 T cells alone. Collectively, these results represent the first demonstration of an immune adjuvant effect exerted by an allogeneic CAR cell product toward the autologous immune system of the host, suggesting that the effect of the administered cells would last longer than the physical persistence of the allogeneic cells after they will be rejected by the host immune system. Figure 1 Disclosures Mackall: Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board; Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 798-804 ◽  
Author(s):  
Monika C. Wolkers ◽  
Carmen Gerlach ◽  
Ramon Arens ◽  
Edith M. Janssen ◽  
Patrick Fitzgerald ◽  
...  

Abstract CD4+ Th cells are pivotal for the generation and maintenance of CD8+ T-cell responses. “Helped” CD8+ T cells receive signals during priming that prevent the induction of the proapoptotic molecule TNF-related apoptosis-inducing ligand (TRAIL) during reactivation, thereby enabling robust secondary expansion. Conversely, “helpless” CD8+ T cells primed in the absence of Th induce TRAIL expression after restimulation and undergo activation-induced cell death. In the present study, we investigated the molecular basis for the differential regulation of TRAIL in helped versus helpless CD8+ T cells by comparing their transcriptional profiles, and have identified a transcriptional corepressor, NGFI-A binding protein 2 (Nab2), that is selectively induced in helped CD8+ T cells. Enforced expression of Nab2 prevents TRAIL induction after restimulation of primary helpless CD8+ T cells, and expression of a dominant-negative form of Nab2 in helped CD8+ T cells impairs their secondary proliferative response that is reversible by TRAIL blockade. Finally, we observe that the CD8+ T-cell autocrine growth factor IL-2 coordinately increases Nab2 expression and decreases TRAIL expression. These findings identify Nab2 as a mediator of Th-dependent CD8+ T-cell memory responses through the regulation of TRAIL and the promotion of secondary expansion, and suggest a mechanism through which this operates.


Blood ◽  
2010 ◽  
Vol 116 (5) ◽  
pp. 748-758 ◽  
Author(s):  
Jessica C. Engram ◽  
Barbara Cervasi ◽  
Jose A. M. Borghans ◽  
Nichole R. Klatt ◽  
Shari N. Gordon ◽  
...  

Abstract Many features of T-cell homeostasis in primates are still unclear, thus limiting our understanding of AIDS pathogenesis, in which T-cell homeostasis is lost. Here, we performed experiments of in vivo CD4+ or CD8+ lymphocyte depletion in 2 nonhuman primate species, rhesus macaques (RMs) and sooty mangabeys (SMs). Whereas RMs develop AIDS after infection with simian immunodeficiency virus (SIV), SIV-infected SMs are typically AIDS-resistant. We found that, in both species, most CD4+ or CD8+ T cells in blood and lymph nodes were depleted after treatment with their respective antibodies. These CD4+ and CD8+ lymphocyte depletions were followed by a largely lineage-specific CD4+ and CD8+ T-cell proliferation, involving mainly memory T cells, which correlated with interleukin-7 plasma levels. Interestingly, SMs showed a faster repopulation of naive CD4+ T cells than RMs. In addition, in both species CD8+ T-cell repopulation was faster than that of CD4+ T cells, with CD8+ T cells reconstituting a normal pool within 60 days and CD4+ T cells remaining below baseline levels up to day 180 after depletion. While this study revealed subtle differences in CD4+ T-cell repopulation in an AIDS-sensitive versus an AIDS-resistant species, such differences may have particular relevance in the presence of active SIV repli cation, where CD4+ T-cell destruction is chronic.


2016 ◽  
Vol 113 (29) ◽  
pp. 8278-8283 ◽  
Author(s):  
Yong Woo Jung ◽  
Hyun Gyung Kim ◽  
Curtis J. Perry ◽  
Susan M. Kaech

C-C receptor 7 (CCR7) is important to allow T cells and dendritic cells to migrate toward CCL19- and CCL21-producing cells in the T-cell zone of the spleen and lymph nodes. The role of this chemokine receptor in regulating the homeostasis of effector and memory T cells during acute viral infection is poorly defined, however. In this study, we show that CCR7 expression alters memory CD8 T-cell homeostasis following lymphocytic choriomeningitis virus infection. Greater numbers of CCR7-deficient memory T cells were formed and maintained compared with CCR7-sufficient memory T cells, especially in the lung and bone marrow. The CCR7-deficient memory T cells also displayed enhanced rates of homeostatic turnover, which may stem from increased exposure to IL-15 as a consequence of reduced exposure to IL-7, because removal of IL-15, but not of IL-7, normalized the numbers of CCR7-sufficient and CCR7-deficient memory CD8 T cells. This result suggests that IL-15 is the predominant cytokine supporting augmentation of the CCR7−/− memory CD8 T-cell pool. Taken together, these data suggest that CCR7 biases memory CD8 T cells toward IL-7–dependent niches over IL-15–dependent niches, which provides insight into the homeostatic regulation of different memory T-cell subsets.


Sign in / Sign up

Export Citation Format

Share Document