homeostatic proliferation
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 28)

H-INDEX

46
(FIVE YEARS 3)

2021 ◽  
Vol 17 (12) ◽  
pp. e1010165
Author(s):  
John M. Murray

The HIV latent reservoir exhibits slow decay on antiretroviral therapy (ART), impacted by homeostatic proliferation and activation. How these processes contribute to the total dynamic while also producing the observed profile of sampled latent clone sizes is unclear. An agent-based model was developed that tracks individual latent clones, incorporating homeostatic proliferation of cells and activation of clones. The model was calibrated to produce observed latent reservoir dynamics as well as observed clonal size profiles. Simulations were compared to previously published latent HIV integration data from 5 adults and 3 children. The model simulations reproduced reservoir dynamics as well as generating residual plasma viremia levels (pVL) consistent with observations on ART. Over 382 Latin Hypercube Sample simulations, the median latent reservoir grew by only 0.3 log10 over the 10 years prior to ART initiation, after which time it decreased with a half-life of 15 years, despite number of clones decreasing at a faster rate. Activation produced a maximum size of genetically intact clones of around one million cells. The individual simulation that best reproduced the sampled clone profile, produced a reservoir that decayed with a 13.9 year half-life and where pVL, produced mainly from proliferation, decayed with a half-life of 10.8 years. These slow decay rates were achieved with mean cell life-spans of only 14.2 months, due to expansion of the reservoir through proliferation and activation. Although the reservoir decayed on ART, a number of clones increased in size more than 4,000-fold. While small sampled clones may have expanded through proliferation, the large sizes exclusively arose from activation. Simulations where homeostatic proliferation contributed more to pVL than activation, produced pVL that was less variable over time and exhibited fewer viral blips. While homeostatic proliferation adds to the latent reservoir, activation can both add and remove latent cells. Latent activation can produce large clones, where these may have been seeded much earlier than when first sampled. Elimination of the reservoir is complicated by expanding clones whose dynamic differ considerably to that of the entire reservoir.


2021 ◽  
Vol 23 (4) ◽  
pp. 671-676
Author(s):  
D. V. Shevyrev ◽  
V. A. Kozlov

Cytokines IL-7 and IL-15 are the most important humoral factors providing T-conventional cell pool reconstitution during homeostatic proliferation caused by lymphopenia. However, whether these cytokines can provide homeostatic maintenance and proliferation of T-regulatory (Treg) cells is largely unknown. Considering the association between homeostatic proliferation and the development of autoimmunity, we decided to investigate the ability of these factors to cause differentiation of Treg-cells into Th17-lymphocytes. Therefore, the purpose of this study was to investigate the influence of humoral factors of homeostatic proliferation (IL-7 and IL-15) on Treg-cells in vitro. The study used peripheral blood sampled from 22 healthy donors. PBMC fraction was isolated by Ficoll density gradient centrifugation. Proliferation was induced by IL-7, IL-15, and by a combination of IL-2 with anti-CD3-antibodies. The proliferation intensity of Tregs was evaluated by flow cytometry using CFSE in PBMC cultures by phenotype CD3+CD4+CD25+FoxP3+ and in the previously purified population of CD3+CD4+CD25+CD127lo-cells. In this case Treg-cells were obtained by immunomagnetic separation from PBMCs using a MACS Treg Isolation Kit. Also, the RORyt expression in CD3+CD4+CD25+FoxP3+-cells was evaluated during cultivation. Here, we have shown that IL-7 and IL-15 could support Treg-cells by number and phenotype. Also, we revealed that these factors provide FoxP3 expression in Treg-cells; meanwhile, stimulation with IL-2 + anti-CD3 can also cause induction of FoxP3 expression de novo in conventional CD4+ cells. Also, we have shown that IL-7 and IL-15 can cause lower-intensity proliferation of Treg-cells in comparison with IL-2 + anti-CD3. Herewith homeostatic cytokines didn’t have the ability to induce RORyt expression in both T-regulatory cells and CD4+ conventional T-lymphocytes. Thus, it has been shown that IL-7 and IL-15 can potentially participate in maintaining the total pool of Treg-cells during lymphopenia, when IL-2 deficiency occurs, without causing the induction of RORyt expression. However, how homeostatic cytokines affect the functional activity of Treg-cells remains unclear and requires further investigation. 


2021 ◽  
Vol 23 (4) ◽  
pp. 725-730
Author(s):  
E. A. Blinova ◽  
L. V. Grishina ◽  
A. E. Sizkov ◽  
V. A. Kozlov

Much attention of researchers is directed to study the role of factors of homeostatic proliferation in the pathogenesis of autoimmune diseases, however, the effect of IL-7 and IL-15 on the phenotype of naive T cells  has not yet been sufficiently investigated in the pathology. The aim of this study was to investigate the proportion of CD45RA+ and CD31+ naive cells among CD4+ and CD8+ lymphocytes from healthy individuals and patients with rheumatoid arthritis (RA) upon stimulation with IL-7, IL-15 in vitro. In peripheral blood, we did not find any differences in the number of CD45RA+ and CD31+ cells between the group of donors and group of RA patients. In donors, stimulation by a combination of IL-7 with IL-15 promoted an increase in the proportion of CD4+CD45RA+ and CD8+CD45RA+  relative to their level in the peripheral blood. Whereas in RA patients the number of CD8+CD45RA+ cells decreased under IL-15 and the combination of IL-15 with IL-7 compared to the control without stimulation, and it, as a proportion of CD4+CD45RA+ cells, significantly differed from the content of these cells  under the same conditions in donors. There were no significant differences in the content of CD31+ cells and the number of CD31+ cells proliferating to cytokines, both between the groups of donors and patients with RA, and between different culture conditions. Thus, we can say that under the factors of homeostatic proliferation, there is a proportional increase in CD31+ T cells number, both in donors and in patients with RA. At the same time, naive T cells from donors  retain the expression of CD45RA during cultivation, while naive T cells from patients partially lose it. The obtained data  indicate that in RA, under  factors of  homeostatic proliferation  the phenotype of naive T cells is converted into the phenotype of memory T cells.


2021 ◽  
Author(s):  
Nancy Liu ◽  
Yucheng Lin ◽  
Liangliang Li ◽  
Jinxiu Lu ◽  
Dawei Geng ◽  
...  

Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a new molecular circuit that regulates chondrogenic cell maintenance and output and reveals a novel, hitherto unrecognized function of IL-6 cytokines in the skeletal system with direct implications for skeletal development and regeneration.


Author(s):  
Ralph C. Budd ◽  
Christopher D. Scharer ◽  
Ramiro Barrantes-Reynolds ◽  
Scott Legunn ◽  
Karen A. Fortner

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Casandra Panea ◽  
Ruoyu Zhang ◽  
Jeffrey VanValkenburgh ◽  
Min Ni ◽  
Christina Adler ◽  
...  

AbstractTissue-resident γδ intraepithelial lymphocytes (IELs) orchestrate innate and adaptive immune responses to maintain intestinal epithelial barrier integrity. Epithelia-specific butyrophilin-like (Btnl) molecules induce perinatal development of distinct Vγ TCR+ IELs, however, the mechanisms that control γδ IEL maintenance within discrete intestinal segments are unclear. Here, we show that Btnl2 suppressed homeostatic proliferation of γδ IELs preferentially in the ileum. High throughput transcriptomic characterization of site-specific Btnl2-KO γδ IELs reveals that Btnl2 regulated the antimicrobial response module of ileal γδ IELs. Btnl2 deficiency shapes the TCR specificities and TCRγ/δ repertoire diversity of ileal γδ IELs. During DSS-induced colitis, Btnl2-KO mice exhibit increased inflammation and delayed mucosal repair in the colon. Collectively, these data suggest that Btnl2 fine-tunes γδ IEL frequencies and TCR specificities in response to site-specific homeostatic and inflammatory cues. Hence, Btnl-mediated targeting of γδ IEL development and maintenance may help dissect their immunological functions in intestinal diseases with segment-specific manifestations.


2021 ◽  
Author(s):  
Tongcui Ma ◽  
Heeju Ryu ◽  
Matthew McGregor ◽  
Benjamin Babcock ◽  
Jason Neidleman ◽  
...  

ABSTRACTCD8+ T cells are important antiviral effectors that can potentiate long-lived immunity against COVID-19, but a detailed characterization of these cells has been hampered by technical challenges. We screened 21 well-characterized, longitudinally-sampled convalescent donors that recovered from mild COVID-19 against a collection of SARS-CoV-2 tetramers, and identified one participant with an immunodominant response against Nuc322-331, a peptide that is conserved in all the SARS-CoV-2 variants-of-concern reported to date. We conducted 38- parameter CyTOF phenotyping on tetramer-identified Nuc322-331-specific CD8+ T cells, and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins from SARS- CoV-2, and took 32 serological measurements on longitudinal specimens from this participant. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and antibody pillars of adaptive immunity. Nuc322-331-specific CD8+ T cells were predominantly central memory T cells, but continually evolved over a ∼6-month period of convalescence. We observed a slow and progressive decrease in the activation state and polyfunctionality of the Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph-node homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence, into a state characteristic of long-lived, self-renewing memory.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


2021 ◽  
Author(s):  
Jason Neidleman ◽  
Xiaoyu Luo ◽  
Ashley F. George ◽  
Matthew McGregor ◽  
Junkai Yang ◽  
...  

SUMMARYAlthough T cells are likely players in SARS-CoV-2 immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe COVID-19. We analyzed T cells from longitudinal specimens of 34 COVID-19 patients with severities ranging from mild (outpatient) to critical culminating in death. Relative to patients that succumbed, individuals that recovered from severe COVID-19 harbored elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 displayed elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of severe COVID-19 patients, these results support a model whereby lung-homing T cells activated through bystander effects contribute to immunopathology, while a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.Graphical AbstractHIGHLIGHTSDysfunctional spike-specific T cells are characteristic of severe COVID-19Spike-specific CD127+ Th1 cells are increased in survivors of severe COVID-19Spike-specific Tregs and IL6+ CD8+ T cells are increased in fatal COVID-19Escalation of activated lung-homing CXCR4+ T cells associates with fatal COVID-19BRIEF SUMMARYBy conducting CyTOF on total and SARS-CoV-2-specific T cells from longitudinal specimens spanning the entire spectrum of COVID-19 diseases, Neidleman et al. demonstrate that spike-specific Th1 cells capable of IL7-dependent homeostatic proliferation predict survival from severe COVID-19, while Tregs and IL6+ CD8+ T cells recognizing spike predict fatal outcome. Fatal COVID-19 is characterized by escalating activation of bystander CXCR4+ T cells in the lungs. Boosting SARS-CoV-2-specific CD4+ T effector responses while diminishing CXCR4-mediated homing may help recovery from severe disease.


2021 ◽  
Vol 5 (1) ◽  
pp. 18-32
Author(s):  
Daniil Shevyrev ◽  
◽  
Valeriy Tereshchenko ◽  
Olesya Manova ◽  
Vladimir kozlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document