scholarly journals Gene placement and competition control T cell receptor γ variable region gene rearrangement

2008 ◽  
Vol 205 (4) ◽  
pp. 929-938 ◽  
Author(s):  
Na Xiong ◽  
Li Zhang ◽  
Chulho Kang ◽  
David H. Raulet

The production of distinct sets of T cell receptor (TCR) γδ+ T cells occurs in an ordered fashion in thymic development. The Vγ3 and Vγ4 genes, located downstream in the TCRγ Cγ1 gene cluster, are expressed by the earliest waves of developing TCRγδ+ T cells in the fetal thymus, destined for intraepithelial locations. Upstream Vγ2 and Vγ5 genes are expressed in later waves in the adult and constitute most TCRγδ+ T cells in secondary lymphoid tissue. This developmental pattern is caused in part by a preference for rearrangements of the downstream Vγ3 and Vγ4 genes in the early fetal stage, which switches to a preference for rearrangements of the upstream Vγ2 and Vγ5 gene rearrangements in the adult. Our gene targeting studies show that the downstream Vγ genes rearrange preferentially in the early fetal thymus because of their downstream location, independent of promoter or recombination signal sequences and unrelated to the extent of germline transcription. Remarkably, gene deletion studies show that the downstream Vγ genes competitively inhibit upstream Vγ rearrangements at the fetal stage. These data provide a mechanism for specialization of the fetal thymus for the production of T cells expressing specific Vγ genes.

Cell ◽  
1986 ◽  
Vol 44 (2) ◽  
pp. 251-259 ◽  
Author(s):  
George D. Yancopoulos ◽  
T.Keith Blackwell ◽  
Heikyung Suh ◽  
Leroy Hood ◽  
Frederick W. Alt

2002 ◽  
Vol 127 (3) ◽  
pp. 527-532 ◽  
Author(s):  
K. S. BUCK ◽  
E. M. FOSTER ◽  
D. WATSON ◽  
J. BARRATT ◽  
I. Z. A. PAWLUCZYK ◽  
...  

1998 ◽  
Vol 188 (7) ◽  
pp. 1375-1380 ◽  
Author(s):  
Baoping Wang ◽  
Ninghai Wang ◽  
Mariolina Salio ◽  
Arlene Sharpe ◽  
Deborah Allen ◽  
...  

CD3γ and CD3δ are two highly related components of the T cell receptor (TCR)–CD3 complex which is essential for the assembly and signal transduction of the T cell receptor on mature T cells. In gene knockout mice deficient in either CD3δ or CD3γ, early thymic development mediated by pre-TCR was either undisturbed or severely blocked, respectively, and small numbers of TCR-αβ+ T cells were detected in the periphery of both mice. γδ T cell development was either normal in CD3δ−/− mice or partially blocked in CD3γ−/− mice. To examine the collective role of CD3γ and CD3δ in the assembly and function of pre-TCR and in the development of γδ T cells, we generated a mouse strain with a disruption in both CD3γ and CD3δ genes (CD3γδ−/−). In contrast to mice deficient in either CD3γ or CD3δ chains, early thymic development mediated by pre-TCR is completely blocked, and TCR-αβ+ or TCR-γδ+ T cells were absent in the CD3γδ−/− mice. Taken together, these studies demonstrated that CD3γ and CD3δ play an essential, yet partially overlapping, role in the development of both αβ and γδ T cell lineages.


1998 ◽  
Vol 188 (8) ◽  
pp. 1465-1471 ◽  
Author(s):  
Barry P. Sleckman ◽  
Bernard Khor ◽  
Robert Monroe ◽  
Frederick W. Alt

The generation of a productive “in-frame” T cell receptor β (TCR β), immunoglobulin (Ig) heavy (H) or Ig light (L) chain variable region gene can result in the cessation of rearrangement of the alternate allele, a process referred to as allelic exclusion. This process ensures that most αβ T cells express a single TCR β chain and most B cells express single IgH and IgL chains. Assembly of TCR α and TCR γ chain variable region genes exhibit allelic inclusion and αβ and γδ T cells can express two TCR α or TCR γ chains, respectively. However, it was not known whether assembly of TCR δ variable regions genes is regulated in the context of allelic exclusion. To address this issue, we have analyzed TCR δ rearrangements in a panel of mouse splenic γδ T cell hybridomas. We find that, similar to TCR α and γ variable region genes, assembly of TCR δ variable region genes exhibits properties of allelic inclusion. These findings are discussed in the context of γδ T cell development and regulation of rearrangement of TCR δ genes.


1992 ◽  
Vol 22 (9) ◽  
pp. 2413-2418 ◽  
Author(s):  
Mouldy Sioud ◽  
Jens Kjeldsen-Kragh ◽  
Sel Suleyman ◽  
Odd Vinje ◽  
Jacob B. Natvig ◽  
...  

2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


Sign in / Sign up

Export Citation Format

Share Document