scholarly journals The E3 ubiquitin ligase Itch restricts antigen-driven B cell responses

2019 ◽  
Vol 216 (9) ◽  
pp. 2170-2183 ◽  
Author(s):  
Emily K. Moser ◽  
Jennifer Roof ◽  
Joseph M. Dybas ◽  
Lynn A. Spruce ◽  
Steven H. Seeholzer ◽  
...  

The E3 ubiquitin ligase Itch regulates antibody levels and prevents autoimmune disease in humans and mice, yet how Itch regulates B cell fate or function is unknown. We now show that Itch directly limits B cell activity. While Itch-deficient mice displayed normal numbers of preimmune B cell populations, they showed elevated numbers of antigen-experienced B cells. Mixed bone marrow chimeras revealed that Itch acts within B cells to limit naive and, to a greater extent, germinal center (GC) B cell numbers. B cells lacking Itch exhibited increased proliferation, glycolytic capacity, and mTORC1 activation. Moreover, stimulation of these cells in vivo by WT T cells resulted in elevated numbers of GC B cells, PCs, and serum IgG. These results support a novel role for Itch in limiting B cell metabolism and proliferation to suppress antigen-driven B cell responses.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.



2003 ◽  
Vol 171 (11) ◽  
pp. 5876-5881 ◽  
Author(s):  
Vanitha S. Raman ◽  
Rama S. Akondy ◽  
Satyajit Rath ◽  
Vineeta Bal ◽  
Anna George


Author(s):  
Ying Fang ◽  
Youdi He ◽  
Bing Zhai ◽  
Chunmei Hou ◽  
Ruonan Xu ◽  
...  


2007 ◽  
Vol 179 (7) ◽  
pp. 4473-4479 ◽  
Author(s):  
Guilin Qiao ◽  
Minxiang Lei ◽  
Zhenping Li ◽  
Yonglian Sun ◽  
Andrew Minto ◽  
...  


Author(s):  
Ying Fang ◽  
Youdi He ◽  
Bing Zhai ◽  
Chunmei Hou ◽  
Ruonan Xu ◽  
...  


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1949-1949
Author(s):  
Anna-Maria Strothmeyer ◽  
Marcus Duehren-von Minden ◽  
Marcelo A Navarrete ◽  
Kristina Heining-Mikesch ◽  
Hendrik Veelken

Abstract Abstract 1949 Poster Board I-972 Tumor-specific immune responses can be induced in patients with indolent B cell lymphomas (iNHL) by active immunization against the individual B cell receptor (BCR) expressed by the malignant B cell clone, the so-called “idiotype” (Id). In subsequent trials of intradermal vaccination with recombinant lymphoma-derived Fab fragment in iNHL, we have studied the specificity of MHC class I-restricted anti-Id T cell responses by epitope mapping experiments with synthetic Id-derived peptides predicted to be presented by the respective patient's HLA complex. While such peptides exist in hypervariable and conserved Id regions, these assays have shown consistently that in vivo-induced T cell responses occur preferentially against individual Id epitopes located in complementarity-determining regions (CDR), whereas framework (FR) and constant region-derived epitopes are ignored (Bertinetti et al., Cancer Res. 2006; Navarrete et al., ASH 2008). These results contrast with in vitro studies showing that FR-derived peptides are excellent targets for cytotoxic T cells in iNHL patients (Trojan et al., Nat Med 2000). To gain further insight into the relative predominance and immunological role of MHC class I-restricted Id epitopes, we conducted a comprehensive reverse immunology study in follicular lymphoma (FL). Clonal and functional IgH chain transcript sequences were identified from tumor biopsies of 39 FL patients by A-PCR (Bertinetti et al., EJH 2006). The HLA-A and B haplotype of the patients was determined by conventional serological testing and high-resolution PCR genotyping. Potentially MHC-presentable peptides from all Id sequences and their corresponding germ-line (GL) VH genes were identified for the HLA haplotypes of all 39 patients by reverse immunology (bimas.cit.nih.gov). Identified peptides were ranked for each haplotype according to their predicted score, and the sum of the scores for the 20 highest ranking peptides was calculated. The sum score for any given Id was compared to the mean of the sum scores of the other 38 Ids on the respective patient's HLA haplotypes. Separate analyses were performed for CDR peptides (containing at least 2 AA in any CDR) versus non-CDR-peptides (allocated through imgt.cines.fr), Id versus GL sequences, and Id versus contaminating sporadic Ig sequences that represent bona fide normal B cells in the biopsies. 72% of all peptides with BIMAS scores of ≥50 and ≥10, respectively, were located in FR, expecially in FR3. The ranked sum Id scores were lower for the patients' own tumor Id than for the mean of the allogeneic Ids (Table; Wilcoxon's matched pair test). This difference was mostly attributable to CDR-derived epitopes throughout all CDRs despite overall lower immunogenicity compared to FR. There was no evidence for differential immunogenicity between a hypermutated FL Id and the corresponding GL (p=0.58). Finally, a preliminary survey of IgH sequences from non-clonal B cells indicated similar immunogenicity compared to FL Id (p=0.31). These bioinformatic findings indicate T cell-mediated immunosurveillance against the BCR of malignant and perhaps nonmalignant B cells. T cell activity appears to be directed predominantly against individual CDR peptides despite their lesser predicted HLA binding capacity compared to FR peptides. Existing CDR epitopes are not generated during the hypermutation process of BCRs, raising the possibility that randomly generated, more immunogenic hypervariable peptides are not permitted by the immune system. In conjunction with the T cell activity observed in in vivo and in vitro studies cited above, these findings are consistent with strong peripheral tolerance to shared Id structures. On the other hand, T cell control of individual Id peptides may play a role in immunosurveillance of malignant B cells and may be exploited for active immunotherapy of lymphoma. In contrast, generic or pan-B-cell epitopes are predicted to be less effective in inducing anti-lymphoma T cell responses.Median (range) BIMASPatient IdMean of allogeneic IdscomparisonAll peptides213 (40-5920)369 (56-5520)p=0.0012FR peptides157 (20-5415)239 (18-3891)p=0.045CDR peptides74 (7-648)175 (21-1760)p<0.0001- CDR1 peptides21 (0.7-144)52 (1.9-630)p=0.0007- CDR2 peptides7.6 (0.2-345)30 (2.2-212)p=0.0089- CDR3 peptides16 (1.3-506)37 (6-980)p=0.0008 Disclosures: No relevant conflicts of interest to declare.



Sign in / Sign up

Export Citation Format

Share Document