scholarly journals Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone.

1993 ◽  
Vol 102 (1) ◽  
pp. 43-57 ◽  
Author(s):  
L G Palmer ◽  
L Antonian ◽  
G Frindt

Activities of Na channels and Na pumps were studied in the rat cortical collecting tubule (CCT) during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet, diuretics, or administration of exogenous aldosterone. Tubules were isolated and split open to expose the luminal membrane surface. Using the whole-cell patch-clamp technique, activities of the apical Na channels and the basolateral Na pumps were measured in principal cells as the currents inhibited by amiloride (10 microM) and ouabain (1 mM), respectively. Na channel current (INa) was not measurable in CCTs from control animals on a normal diet. INa was approximately 200 pA/cell in CCTs from animals on a low-Na diet or infused with aldosterone using osmotic minipumps. Currents attributable to the Na pump (Ipump) were similar in control animals and animals on a low-Na diet. Maximal currents were approximately 35 pA/cell in both groups, and decreased with hyperpolarization of the cell membrane. In contrast, administration of exogenous aldosterone increased Ipump fourfold. Coinfusion of aldosterone and amiloride in vivo through the minipumps did not affect the induction of INa but reduced the induction of Ipump by 80%. We conclude that the induction of channel activity in this tissue is a direct action of aldosterone, whereas the induction of pump activity may be a consequence of the increased Na traffic through the epithelial cells.

1993 ◽  
Vol 102 (1) ◽  
pp. 25-42 ◽  
Author(s):  
J Pácha ◽  
G Frindt ◽  
L Antonian ◽  
R B Silver ◽  
L G Palmer

The activity of apical membrane Na channels in the rat cortical collecting tubule was studied during manipulation of the animals' mineralocorticoid status in vivo using a low-Na diet or the diuretic furosemide. Tubules were isolated and split open to expose the luminal membrane surface. Induction of Na channel activity was studied in cell-attached patches of the split tubules. No activity was observed with control animals on a normal diet. Channel activity could be induced by putting the animals on the low-Na diet for at least 48 h. The mean number of open channels per patch (NPo) was maximal after 1 wk on low Na. Channels were also induced within 3 h after injection of furosemide (20 mg/kg body wt per d). NPo was maximal 48 h after the first injection. In both cases, increases in NPo were primarily due to increases in the number of channels per patch (N) at a constant open probability (Po). With salt depletion or furosemide injection NPo is a saturable function of aldosterone concentration with half-maximal activity at approximately 8 nM. When animals were salt repleted after 1-2 wk of salt depletion, both plasma aldosterone and NPo fell markedly within 6 h. NPo continued to decrease over the next 14 h, while plasma aldosterone rebounded partially. Channel activity may be dissociated from aldosterone concentrations under conditions of salt repletion.


1996 ◽  
Vol 271 (5) ◽  
pp. F1086-F1092 ◽  
Author(s):  
G. Frindt ◽  
L. G. Palmer

The whole cell patch-clamp technique was used to investigate the interactions of the amiloride-sensitive Na channel of the rat cortical collecting tubule (CCT) with adenosine 3',5'-cyclic monophosphate (cAMP) and with methyl donors. The amiloride-sensitive whole cell current (INa) was measured in principal cells of dissected, split-open tubules from rats maintained either on a control diet or on a low-Na diet to increase endogenous aldosterone secretion. With Na-depleted animals, INa was highest immediately after rupture of the membrane patch and averaged 325 pA at a membrane potential of -60 mV. INa declined over 15 min to approximately 35% of the initial value. With 8-(4-chlorophenylthio)-cAMP in the pipette, INa increased within 5 min of membrane rupture and was maintained for 15 min at levels three- to fourfold higher than the corresponding control values. With Na-replete animals, INa was undetectable (< 10 pA) without cAMP. With cAMP in the pipette, INa averaged 40 pA. In cell-attached patches on tubules from Na-replete rats exposed to cAMP, single Na channels were observed with conductive and kinetic properties similar to those from Na-depleted rats but at lower density. Inclusion of the methyl donor S-adenosyl methionine to the pipette solution did not increase INa in CCTs from Na-replete rats, either in the presence or absence of cAMP. The methylation inhibitor S-adenosyl homocysteine did not affect INa in CCT from Na-depleted animals.


1994 ◽  
Vol 104 (4) ◽  
pp. 693-710 ◽  
Author(s):  
L G Palmer ◽  
L Antonian ◽  
G Frindt

The patch-clamp technique was used to study the properties and the density of conducting K and Na channels in the apical membrane of rat cortical collecting tubule. The predominant K channel observed in cell-attached patches (SK channels) had an outward single-channel conductance (with LiCl in the pipette) of 10 pS. The inward conductance (with KCl in the pipette) was 42 pS. The channel had a high open probability that increased with depolarization. Kinetic analysis indicated the presence of a single open state and two closed states. Increasing K intake by maintaining animals on a high K diet for 12-16 d increased the number of SK channels per patch by threefold (0.7-2.0/patch) over control levels. In addition, conducting Na-selective channels, which were not observed in control animals, were seen at low density (0.5/patch). These channels had properties similar to those observed when the animals were on a low Na diet, except that the mean open probability (0.84) was higher. In other experiments, the whole-cell patch clamp technique was used to measure Na channel activity (as amiloride-sensitive current, INa) and Na pump activity (as ouabain-sensitive current, Ipump). In animals on a high K diet, INa was greater than in controls but much less than in rats on a low Na diet. Ipump was greater after K loading than in controls or Na-depleted animals. These K diet-dependent effects were not accompanied by a significant increase in plasma aldosterone concentrations. To further investigate the relationship between K channel activity and mineralocorticoids, rats were maintained on a low Na diet to increase endogenous aldosterone secretion. Under these conditions, no increase in SK channel density was observed, although there was a large increase in the number of Na channels (to 2.7/patch). Aldosterone was also administered exogenously through osmotic minipumps. As with the low Na diet, there was no change in the density of conducting SK channels, although Na channel activity was induced. These results suggest that SK channels, Na channels and Na/K pumps are regulated during changes in K intake by factors other than aldosterone.


1996 ◽  
Vol 107 (1) ◽  
pp. 35-45 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The gating kinetics of apical membrane Na channels in the rat cortical collecting tubule were assessed in cell-attached and inside-out excised patches from split-open tubules using the patch-clamp technique. In patches containing a single channel the open probability (Po) was variable, ranging from 0.05 to 0.9. The average Po was 0.5. However, the individual values were not distributed normally, but were mainly &lt; or = 0.25 or &gt; or = 0.75. Mean open times and mean closed times were correlated directly and inversely, respectively, with Po. In patches where a sufficient number of events could be recorded, two time constants were required to describe the open-time and closed-time distributions. In most patches in which basal Po was &lt; 0.3 the channels could be activated by hyperpolarization of the apical membrane. In five such patches containing a single channel hyperpolarization by 40 mV increased Po by 10-fold, from 0.055 +/- 0.023 to 0.58 +/- 0.07. This change reflected an increase in the mean open time of the channels from 52 +/- 17 to 494 +/- 175 ms and a decrease in the mean closed time from 1,940 +/- 350 to 336 +/- 100 ms. These responses, however, could not be described by a simple voltage dependence of the opening and closing rates. In many cases significant delays in both the activation by hyperpolarization and deactivation by depolarization were observed. These delays ranged from several seconds to several tens of seconds. Similar effects of voltage were seen in cell-attached and excised patches, arguing against a voltage-dependent chemical modification of the channel, such as a phosphorylation. Rather, the channels appeared to switch between gating modes. These switches could be spontaneous but were strongly influenced by changes in membrane voltage. Voltage dependence of channel gating was also observed under whole-cell clamp conditions. To see if mechanical perturbations could also influence channel kinetics or gating mode, negative pressures of 10-60 mm Hg were applied to the patch pipette. In most cases (15 out of 22), this maneuver had no significant effect on channel behavior. In 6 out of 22 patches, however, there was a rapid and reversible increase in Po when the pressure was applied. In one patch, there was a reversible decrease. While no consistent effects of pressure could be documented, membrane deformation could contribute to the variation in Po under some conditions.


1987 ◽  
Vol 253 (2) ◽  
pp. F333-F339 ◽  
Author(s):  
L. G. Palmer ◽  
G. Frindt

The patch-clamp technique was used to identify individual Na channels in the apical membrane of the rat cortical collecting tubule and to evaluate the effects of cytoplasmic Ca2+ and pH on channel activity. In excised, inside-out patches, the probability of a channels's being open (P0) increased with alkalinization of the solution bathing the cytoplasmic side of the patch. Estimates of P0 were 0.05 at pH 6.4, 0.19 at pH 6.9, and 0.41 at pH 7.4. Varying the free Ca2+ concentration of the solution bathing the cytoplasmic side of the patch had no measurable effect on P0. In cell-attached patches, addition of the Ca2+ ionophore ionomycin to the solution bathing the tubules to a final concentration of either 1 or 10 microM decreased channel activity measured as the mean number of open channels (no. open) = n X P0 where n is the number of channels in the membrane. (no. open) was significantly decreased at 3 min after addition of ionomycin and fell to less than 10% of control values after 10 min incubation. There was no fall in (no. open) either in time controls or in tubules exposed to ionomycin in the presence of low bath Ca2+ concentrations [no added Ca2+ with 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA)]. The results suggest that cytoplasmic pH can directly influence channel activity. Cytoplasmic Ca2+ does not interact directly with the channels, but increased cytoplasmic Ca2+ produces a fall in channel activity through an indirect process.


1988 ◽  
Vol 92 (1) ◽  
pp. 121-138 ◽  
Author(s):  
L G Palmer ◽  
G Frindt

The behavior of individual Na channels in the apical membrane of the rat cortical collecting tubule (CCT) was studied at different concentrations of the permeant ions Na and Li. Tubules were opened to expose their luminal surfaces and bathed in K-gluconate medium to minimize tubule-to-tubule variation in cell membrane potential and intracellular Na concentration. The patch-clamp technique was used to resolve currents through individual channels. The patch-clamp pipette was filled with solutions containing variable concentrations of either NaCl or LiCl. In one series of experiments, the concentrations were changed without substitutions. In another series, the ionic strength and Cl concentration were maintained constant by partial substitution of Li with N-methyl-D-glucamine (NMDG). In cell-attached patches, both the single-channel conductance (g) and the single-channel current (i) saturated as functions of the Na or Li activity in the pipette. Without NMDG, the saturation of i was well described by Michaelis-Menten kinetics with an apparent Km of approximately 20 mM activity for Na and approximately 50 mM activity for Li. Km was independent of voltage for both ions. With substitution for Li by NMDG, the apparent Km value for Li transport through the channels increased. The values of the probability of a channel's being open (Po) varied from patch to patch, but no effect of pipette ion activity on Po could be demonstrated. A weak dependence of Po on membrane voltage was observed, with hyperpolarization increasing Po by an average of 2.3%/mV.


1990 ◽  
Vol 258 (3) ◽  
pp. F562-F567 ◽  
Author(s):  
G. Frindt ◽  
H. Sackin ◽  
L. G. Palmer

Individual principal cells within the rat cortical collecting tubule were studied under voltage-clamp conditions using the whole-cell variation of the patch-clamp technique. Isolated tubules were split to expose the apical membrane surface and bathed in NaCl medium at 23 degrees C. When carboxyfluorescein was included in the patch pipette, the dye diffused rapidly into the cell being clamped but did not spread to neighboring cells, indicating a lack of cell-to-cell coupling. Average cell capacitance under whole-cell clamp conditions with KCl in the pipette was 18 +/- 2 pF (n = 10 cells) in rats maintained on a normal diet, consistent with that expected from morphometric measurements of cell surface area. The capacitance increased to 36 +/- 7 pF (n = 8 cells) for rats kept on a low-Na diet, indicating that cell membrane area was increased under these conditions. The amiloride-sensitive whole-cell conductance (GNa), assumed to equal the conductance through apical Na channels, was determined as the slope of the current-voltage relation near zero holding potential. GNa was 6.0 +/- 1.7 nS/cell (n = 12) for rats maintained on a low-Na diet compared with 0.06 +/- 0.08 nS/cell (n = 13) for rats kept on a normal diet. The amiloride-insensitive whole-cell conductance averaged 9.1 +/- 2.0 nS/cell, with no significant difference between low-Na and normal groups. Sodium channel density (N) was estimated from GNa, the mean open probability of the channel, and the single-channel conductance. N equals 3,000 channels/cells in rats on a low-Na diet compared with N less than 100 channels/cell for rats on a normal diet.


1991 ◽  
Vol 261 (6) ◽  
pp. F933-F944 ◽  
Author(s):  
B. N. Ling ◽  
C. F. Hinton ◽  
D. C. Eaton

Patch-clamp methodology was applied to principal cell apical membranes of rabbit cortical collecting tubule (CCT) primary cultures grown on collagen supports in the presence of aldosterone (1.5 microM). The most frequently observed channel had a unit conductance of 3-5 pS, nonlinear current-voltage (I-V) relationship, Na permeability (PNa)-to-K permeability (PK) ratio greater than 19:1, and inward current at all applied potentials (Vapp) less than +80 mV (n = 41). Less frequently, an 8- to 10-pS channel with a linear I-V curve, PNa/PK less than 5:1, and inward current at Vapp less than +40 mV was also observed (n = 7). Luminal amiloride (0.75 microM) decreased the open probability (Po) for both of these channels. Mean open time for the high-selectivity Na+ channel was 2.1 +/- 0.5 s and for the low-selectivity Na+ channel was 50 +/- 12 ms. In primary cultures grown without aldosterone the high-selectivity Na+ channel was rarely observed (1 of 32 patches). Lastly, a 26- to 35-pS channel, nonselective for Na+ over K+, was not activated by cytoplasmic Ca2+ or voltage nor inhibited by amiloride (n = 17). We conclude that under specific growth conditions, namely permeable transporting supports and chronic mineralocorticoid hormone exposure, principal cell apical membranes of rabbit CCT primary cultures contain 1) both high-selectivity and low-selectivity, amiloride-inhibitable Na+ channels and 2) amiloride-insensitive, nonselective cation channels.


2021 ◽  
Vol 22 (4) ◽  
pp. 1858
Author(s):  
Waheed Shabbir ◽  
Nermina Topcagic ◽  
Mohammed Aufy ◽  
Murat Oz

Tumor necrosis factor (TNF) is known to activate the epithelial Na+ channel (ENaC) in A549 cells. A549 cells are widely used model for ENaC research. The role of δ-ENaC subunit in TNF-induced activation has not been studied. In this study we hypothesized that δ-ENaC plays a major role in TNF-induced activation of ENaC channel in A549 cells which are widely used model for ENaC research. We used CRISPR/Cas 9 approach to knock down (KD) the δ-ENaC in A549 cells. Western blot and immunofluorescence assays were performed to analyze efficacy of δ-ENaC protein KD. Whole-cell patch clamp technique was used to analyze the TNF-induced activation of ENaC. Overexpression of wild type δ-ENaC in the δ-ENaC KD of A549 cells restored the TNF-induced activation of whole-cell Na+ current. Neither N-linked glycosylation sites nor carboxyl terminus domain of δ-ENaC was necessary for the TNF-induced activation of whole-cell Na+ current in δ-ENaC KD of A549 cells. Our data demonstrated that in A549 cells the δ-ENaC plays a major role in TNF-induced activation of ENaC.


1996 ◽  
Vol 271 (2) ◽  
pp. F451-F460 ◽  
Author(s):  
M. S. Gallego ◽  
B. N. Ling

We used patch-clamp methods to investigate the effects of basolateral endothelin-1 (ET-1) on the amiloride-sensitive Na+ channel in A6 distal nephron cells. One hundred picomolar ET-1 decreased channel activity via an increase in mean time closed (P < 0.01, n = 10). Channel inhibition by pM ET-1 was mimicked by an ET-B receptor agonist (P < 0.05, n = 7) and was prevented by ET-B antagonists (P = 0.14, n = 10) but not by an ET-A antagonist (P < 0.05, n = 4). With the inhibitory ET-B receptor blocked, higher doses of ET-1 (10 nM) actually increased channel activity through an increase in mean time open (P < 0.001, n = 12). The current-voltage relationship and the number of channels were not changed by basolateral ET-1 exposure. We conclude that 1) basolateral ET-1 regulates amiloride-sensitive Na+ channels; 2) binding of picomolar ET-1 to ET-B receptors inhibits, whereas the binding of nanomolar ET-1 to a different ET receptor (likely ET-A) stimulates, channel activity; and 3) these dose-dependent, distal nephron responses provide a potential mechanism for the in vivo natriuresis and antinatriuresis observed in response to "subpressor" and "pressor" concentrations of ET-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document